• Title/Summary/Keyword: RG3

Search Result 824, Processing Time 0.033 seconds

LC-MS-based metabolomic analysis of serum and livers from red ginseng-fed rats

  • Kim, Hyun-Jin;Cho, Chang-Won;Hwang, Jin-Taek;Son, Nari;Choi, Ji Hea;Shim, Gun-Sub;Han, Chan-Kyu
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.371-378
    • /
    • 2013
  • Serum and liver metabolites in rats fed red ginseng (RG) were analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. The mass data were analyzed by partial least squares-discriminant analysis (PLS-DA) to discriminate between control and RG groups and identify metabolites contributing to this discrimination. The RG group was clearly separated from the control group on PLS-DA scores plot for serum samples, but not liver samples. The major metabolites contributing to the discrimination included lipid metabolites (lysophosphatidylcholine, acyl-carnitine, and sphingosine), isoleucine, nicotinamide, and corticosterone in the serum; the blood levels of all but isoleucine were reduced by RG administration. Not all metabolites were positively correlated with the health benefits of RG. However, the blood levels of lysophosphatidylcholine, which stimulate various diseases, and long-chain acylcarnitines and corticosterone, which activate the stress response, were reduced by RG, suggesting long-term RG might relieve stress and prevent physiological and biological problems.

Anti-fatigue activity of a mixture of seahorse (Hippocampus abdominalis) hydrolysate and red ginseng

  • Kang, Nalae;Kim, Seo-Young;Rho, Sum;Ko, Ju-Young;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.3
    • /
    • pp.3.1-3.8
    • /
    • 2017
  • Seahorse, a syngnathidae fish, is one of the important organisms used in Chinese traditional medicine. Hippocampus abdominalis, a seahorse species successfully cultured in Korea, was validated for use in food by the Ministry of Food and Drug Safety in February 2016; however. the validation was restricted to 50% of the entire composition. Therefore, to use H. abdominalis as a food ingredient, H. abdominalis has to be prepared as a mixture by adding other materials. In this study, the effect of H. abdominalis on muscles was investigated to scientifically verify its potential bioactivity. In addition, the anti-fatigue activity of a mixture comprising H. abdominalis and red ginseng (RG) was evaluated to commercially utilize H. abdominalis in food industry. H. abdominalis was hydrolyzed using Alcalase, a protease, and the effect of H. abdominalis hydrolysate (HH) on the muscles was assessed in C2C12 myoblasts by measuring cell proliferation and glycogen content. In addition, the mixtures comprising HH and RG were prepared at different percentages of RG to HH (20, 30, 40, 50, 60, 70, and 80% RG), and the anti-fatigue activity of these mixtures against oxidative stress was assessed in C2C12 myoblasts. In C2C12 myoblasts, $H_2O_2$-induced oxidative stress caused a decrease in viability and physical fatigue-related biomarkers such as glycogen and ATP contents. However, treatment with RG and HH mixtures increased cell viability and the content of fatigue-related biomarkers. In particular, the 80% RG mixture showed an optimum effect on cell viability and ATP synthesis activity. In this study, all results indicated that HH had anti-fatigue activity at concentrations approved for use in food by the law in Korea. Especially, an 80% RG to HH mixture can be used in food for ameliorating fatigue.

Rapid Determination of Ginsenosides Rb1, Rf, and Rg1 in Korean Ginseng Using HPLC (HPLC를 이용한 고려인삼 중 진세노사이드 Rb1, Rf 및 Rg1의 신속분석 방법 개발)

  • Hong, Hee-Do;Choi, Sang-Yoon;Kim, Young-Chan;Lee, Young-Chul;Cho, Chang-Won
    • Journal of Ginseng Research
    • /
    • v.33 no.1
    • /
    • pp.8-12
    • /
    • 2009
  • A simple gradient HPLC method for rapid determination of major ginsenosides ($Rg_1$ and $Rb_1$) and unique ginsenoside (Rf) of Korean ginseng (Panax ginseng C.A. Meyer) was developed. Within 50min, three ginsenosides have been separated and identified on $\mu$-Bondapak $C_{18}$ column ($3.9{\times}300\;mm$, $10{\mu}m$) with gradient elution using water and acetonitrile as a mobile phase. The method was validated in terms of linearity, accuracy, and precision. The correlation coefficients ($r^2$) for calibration curves of ginsenosides were over 0.9997. The developed HPLC method was successfully applied to the analysis of ginseng samples and the recoveries of ginsenosides were in the range of $101.1{\sim}115%$ with RSD<3.2%. The developed method could be used for rapid evaluation of the ginsenosides $Rg_1$, $Rb_1$, and Rf.

Panax Ginseng Rg1 Enhances CD4+ T Cell Activities and Modulates Th1/Th2 Differentiation (인삼 Saponin Rg1이 분화된 보조 T cell의 cytokine 분비에 미치는 영향)

  • Kwon Hong Rho;Ko Eun Jung;Bae Hyun Su;Hong Moo Chang;Jung Seung Gi;Shin Min Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1021-1027
    • /
    • 2004
  • Panax ginseng has been used as a typical tonic medicine in Asian countries, such as Korea, China, and Japan. It has been reported that ginsenoside Rg1 in Panax ginseng increases the proportion of T helper cells in the whole T cells and promotes IL-2 gene expression in murine splenocytes. These studies imply that ginsenoside Rg1 increases the immune activity of CD4+ T cell, however the exact mechanism of ginsenoside Rg1 on helper T cell remains to be verified. The present study tried to elucidate the direct effect of Rg1 on helper T cell s activities and its Th1/Th2 lineage development. The results demonstrated that ginsenoside Rg1 had not mitogenic effects on the unstimulated CD4+ T cell, but augmented CD4+ T cell proliferation upon activating with anti-CD3/anti-CD28 antibodies in a dose dependent manner. Rg1 also enhanced the expression of cell surface protein CD69 on CD4+ T cell. In Th0 condition, ginsenoside Rg1 increases the expression of IL-2 mRNA, and enhances the expression of IL-4 mRNA on CD4+ T cells, suggesting Rg1 prefer to induce Th2 lineage development. In addition, ginsenoside Rg1 increases IL-4 secreting CD4+ T cell under Th2 skewed condition, while decreases IFN-γ secreting cell in Th1 polarizing condition. Thus, Rg1 enhances Th2 lineage development from naive CD4+ T cell both by increasing Th2 specific cytokine secretion and by repressing Th1 specific cytokine production. Therefore, these results suggest that ginsenoside Rg1 might be desirable agent for enhancing CD4+ T cell's activity, as well as the correction of Th1 dominant pathological disorders.

Effects of Ginsenosides on $pp60^{c-src}$ Kinase, Intracellular Calcium and Cell Proliferation in NIH 373 Cells

  • Hong, Hee-Youn;Yoo, Gyurng-Soo;Choi, Jung-Kap
    • Journal of Ginseng Research
    • /
    • v.22 no.2
    • /
    • pp.126-132
    • /
    • 1998
  • In the present study, we examined effects of ginseng saponins (ginsenosides) on pp60c-src protein tyrosine kinase (PTK) activity, intracellular calcium concentration ([$Ca^{2+}$]i), and cell proliferation in NIH3T3 cells. Eight different ginsenosides [ginsenoside-Rb1 (G-$Rb_1$), -$Rb_2$, -Rc, -Rd, -Re, -Rf, -$Rg_1$, -$Rg_2$) and ginseng total saponin (GTS) were used for these experiments. All ginsenosides and GTS tested stimulated the activation of $pp60^{c-src}$ kinase, and especially G-$Rb_1$,-Rd,-$Rg_1$, and -$Rg_1$ showed a higher stimulatory effect than others at 16.7 $\mu\textrm{g}$/ml of ginsenosides with a 18 hr-incubation, increasing the activity by 4.5, 3.5, 3.5, and 3.0-fold, respectively, over that of untreated control. In addition, both G-Rd and -$Rg_2$)Rg2 increased ($Ca^{2+}$), to 202 and 334 nM, respectively, about 2-3-fold above the basal level within 7min at 250 $\mu\textrm{g}$/yml of ginsenosides. The increases of ($Ca^{2+}$), were eliminated by Pretreatment of EGTA, an extracellular calcium chelator, suggtasting that they result from an influx of calcium ion from extracellular medium rather than an efflux from intracellular calcium store, endoplasmic reticulum (ER). All ginsenosides studied enhanced cell proliferation to 1.2-1.4-fold over that of untreated control at 5~250 $\mu\textrm{g}$/ml of concentrations. Interestingly the promotion of cell proliferation by ginsenosides corresponded with the activation of c-src kinase, which is an early step in the mitogenic signaling cascade. Taken together, we suggest that some ginsenosides may lead to cellProliferation via the activation of cellular signal transduction Pathway involving $pp60^{c-src}$ kinase.

  • PDF

The involvement of Parkin-dependent mitophagy in the anti-cancer activity of Ginsenoside

  • Sun, Xin;Hong, Yeting;Shu, Yuhan;Wu, Caixia;Ye, Guiqin;Chen, Hanxiao;Zhou, Hongying;Gao, Ruilan;Zhang, Jianbin
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.266-274
    • /
    • 2022
  • Colon cancer, the third most frequent occurred cancer, has high mortality and extremely poor prognosis. Ginsenoside, the active components of traditional Chinese herbal medicine Panax ginseng, exerts antitumor effect in various cancers, including colon cancer. However, the detailed molecular mechanism of Ginsenoside in the tumor suppression have not been fully elucidated. Here, we chose the representative ginsenoside Rg3 and reported for the first time that Rg3 induces mitophagy in human colon cancer cells, which is responsible for its anticancer effect. Rg3 treatment leads to mitochondria damage and the formation of mitophagosome; when autophagy is inhibited, the clearance of damaged mitochondria can be reversed. Next, our results showed that Rg3 treatment activates the PINK1-Parkin signaling pathway and recruits Parkin and ubiquitin proteins to mitochondria to induce mitophagy. GO analysis of Parkin targets showed that Parkin interacts with a large number of mitochondrial proteins and regulates the molecular function of mitochondria. The cellular energy metabolism enzyme GAPDH is validated as a novel substrate of Parkin, which is ubiquitinated by Parkin. Moreover, GAPDH participates in the Rg3-induced mitophagy and regulates the translocation of Parkin to mitochondria. Functionally, Rg3 exerts the inhibitory effect through regulating the nonglycolytic activity of GAPDH, which could be associated with the cellular oxidative stress. Thus, our results revealed GAPDH ubiquitination by Parkin as a crucial mechanism for mitophagy induction that contributes to the tumor-suppressive function of ginsenoside, which could be a novel treatment strategy for colon cancer.

Changes in ginsenoside composition of ginseng berry extracts after a microwave and vinegar process

  • Kim, Shin-Jung;Kim, Ju-Duck;Ko, Sung-Kwon
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.269-272
    • /
    • 2013
  • MGB-20 findings show that the ginseng berry extracts that had been processed with microwave and vinegar for 20 min peaked in the level of ginsenoside Rg2 (2.28%) and Rh1 (1.28%). MGB-1 peaked in the level of ginsenoside Rg3 (1.13%) in the ginseng berry extract processed with microwave and vinegar for 1 min.

Patterns and Contents of Ginsenoside in Normal Root Parts and Hairy Root Lines of Panax ginseng C. A. Meyer (인삼 뿌리 부위별 및 모상근 세포주간 ginsenoside 양상 및 함량)

  • 양덕춘;양계진
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.485-489
    • /
    • 2000
  • The patterns and contents of ginsenosides were examined in normal root parts and hairy root lines of Panax ginseng C. A. Meyer. Ginsenoside-Rb$_1$, -Rb$_2$, -Rc, -Rd, -Re, -Rf, -Rg$_1$, -Rg$_2$ were detected in normal roots and hairy roots of ginseng. The patterns and contents of ginsenosides in that were very difference each other. The contents of total ginsenoside of hairy root (KGHR-1) was 17.42 mg/g dry wt, it's highest compared to others. Ginsenoside contents of hairy root (KGHR-1) was higher on ginsenoside-Rd, Rg$_1$, KGHR-5 was higher on ginsenoside-Rb$_1$, Rg$_1$, and KGHR-8 was higher on ginsenoside-Rd, Re than others. The contents of total ginsenosides on 6 years old ginseng cultured in the field were high in the order of main root, lateral root and fine roots, and content of ginsenosides in fine roots was 3.2 times higher than that in main root. The ratio of ginsenoside-Rg$_1$to total ginsenosides were about 3.43%, 8.68% and 14.18% respectively on fine root, lateral root and main root, it's very lower than that in hairy roots. It is suggested that specific ginsenosides can be produce in cultures of ginseng hairy roots.

  • PDF

A Role for Leu247 Residue within Transmembrane Domain 2 in Ginsenoside-Mediated α7 Nicotinic Acetylcholine Receptor Regulation

  • Lee, Byung-Hwan;Choi, Sun-Hye;Pyo, Mi Kyung;Shin, Tae-Joon;Hwang, Sung-Hee;Kim, Bo-Ra;Lee, Sang-MoK;Lee, Jun-Ho;Lee, Joon-Hee;Lee, Hui Sun;Choe, Han;Han, Kyou-Hoon;Kim, Hyoung-Chun;Rhim, Hyewhon;Yong, Joon-Hwan;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.591-599
    • /
    • 2009
  • Nicotinic acetylcholine receptors (nAChRs) play important roles in nervous system functions and are involved in a variety of diseases. We previously demonstrated that ginsenosides, the active ingredients of Panax ginseng, inhibit subsets of nAChR channel currents, but not ${\alpha}7$, expressed in Xenopus laevis oocytes. Mutation of the highly conserved Leu247 to Thr247 in the transmembrane domain 2 (TM2) channel pore region of ${\alpha}7$ nAChR induces alterations in channel gating properties and converts ${\alpha}7$ nAChR antagonists into agonists. In the present study, we assessed how point mutations in the Leu247 residue leading to various amino acids affect 20(S)-ginsenoside $Rg_3$ ($Rg_3$) activity against the ${\alpha}7$ nAChR. Mutation of L247 to L247A, L247D, L247E, L247I, L247S, and L247T, but not L247K, rendered mutant receptors sensitive to $Rg_3$. We further characterized $Rg_3$ regulation of L247T receptors. We found that $Rg_3$ inhibition of mutant ${\alpha}7$ nAChR channel currents was reversible and concentration-dependent. $Rg_3$ inhibition was strongly voltage-dependent and noncompetitive manner. These results indicate that the interaction between $Rg_3$ and mutant receptors might differ from its interaction with the wild-type receptor. To identify differences in $Rg_3$ interactions between wild-type and L247T receptors, we utilized docked modeling. This modeling revealed that $Rg_3$ forms hydrogen bonds with amino acids, such as Ser240 of subunit I and Thr244 of subunit II and V at the channel pore, whereas $Rg_3$ localizes at the interface of the two wild-type receptor subunits. These results indicate that mutation of Leu247 to Thr247 induces conformational changes in the wild-type receptor and provides a binding pocket for $Rg_3$ at the channel pore.

Saponin Contents and Physicochemical Properties of Red Ginseng Extract Pouch Products Collected from Ginseng Markets in Korea (국내 인삼시장에서 유통되고 있는 홍삼 파우치 제품의 사포닌 함량 및 이화학적 특성)

  • Choi, Jae-Eul;Han, Jin-Soo;Kang, Sun-Joo;Kim, Kwan-Hou;Kim, Kyoung-Hee;Yook, Hong-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.11
    • /
    • pp.1660-1665
    • /
    • 2010
  • To obtain data for the standardization of manufacturing method of red ginseng extract pouch products, saponin and physico-chemical properties of 44 Korean red ginseng extract pouch products were analyzed. The concentration of total ginsenoside contents were 5.5~185.7 mg/100 mL. Distribution of the contents of ginsenoside $Rg_3$, $Rg_2$, $Rh_1$, and $Rh_2$ known to have anticancer effect are as follows: $Rg_3$ is 1.6~46.3 mg/100 mL, $Rg_2$ is 0~22.0 mg/100 mL, $Rh_1$ is 0~4.3 mg/100 mL and that of $Rh_2$ is 0~20.4 mg/100 mL, respectively. The anti-diabetic effect of ginsenoside $Rb_2$ and Re distribution of contents were 0~10.8 mg/100 mL and 0~7.0 mg/100 mL, respectively. Among the other saponins, exhibited content to distribution of ginsenoside $Rb_1$ was 0~25.2 mg/100 mL, Rc was 0~12.5 mg/100 mL, Rd was 0~11.3 mg/100 mL, Rf was 0~5.9 mg/100 mL and $Rg_1$ was 0~4.4 mg/100 mL. Results of physicochemical characterization showed total sugar content of 226.6~3,102.9 mg/100 mL, total soluble solids content $1.4\sim9.5^{\circ}Bx$, turbidity 82.2~100.0%, pH in the range of 4.1 to 5.0, respectively. In approximately 50% of collected domestic ginseng extract pouch products (21~24 items), ginsenoside $Rb_1$, $Rb_2$, Rc, Rd, Re and $Rg_1$ were not detected, and saponin content of each product appears to differ greatly. Results indicated that standardization of production methods and standards set for red ginseng extract pouch products in Korea is needed.