• Title/Summary/Keyword: RFID phase

Search Result 59, Processing Time 0.028 seconds

Design of a 960MHz CMOS PLL Frequency Synthesizer with Quadrature LC VCO (960MHz Quadrature LC VCO를 이용한 CMOS PLL 주파수 합성기 설계)

  • Kim, Shin-Woong;Kim, Young-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.61-67
    • /
    • 2009
  • This paper reports an Integer-N phase locked loop (PLL) frequency synthesizer which was implemented in a 250nm standard digital CMOS process for a UHF RFID wireless communication system. The main blocks of PLL have been designed including voltage controlled oscillator, phase frequency detector, and charge pump. The LC VCO has been used for a better noise property and low-power design. The source and drain juntions of PMOS transistors are used as the varactor diodes. The ADF4111 of Analog Device has been used for the external pre-scaler and N-divider to divide VCO frequency and a third order RC filter is designed for the loop filter. The measured results show that the RF output power is -13dBm with 50$\Omega$ load, the phase noise is -91.33dBc/Hz at 100KHz offset frequency, and the maximum lock-in time is less than 600us from 930MHz to 970MHz.

Design of Clock Recovery circuit for 13.56MHz RFID Tags with 100% ASK Receiver (100% ASK 수신기를 위한 13.56MHz RFID Tag용 클럭 복원회로 설계)

  • Kim, Ji-Gon;Yi, Kyeong-Il;Kim, Hyun-Sik;Kim, J.H.;Kim, Hyo-Jong;Kim, Shi-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.11
    • /
    • pp.44-49
    • /
    • 2008
  • We have proposed a clock recovery circuit for 13.56MHz RFID Tags using 100%, ASK RF input signal. The proposed clock recovery circuit generates clock pulses without reference clock by adapting register controlled DLL. The proposed circuit have designed by using a TSMC 0.18um 1P6M CMOS technology. The simulated results show that the phase locking time of the proposed circuit is about 6.4 usec and power consumption is about 43uW at supply voltage of 3.3V.

A Tag Response Loss Detection Scheme for RFID Group Proof (RFID 그룹증명을 위한 응답손실 감지기법)

  • Ham, Hyoungmin
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.9
    • /
    • pp.637-645
    • /
    • 2019
  • The RFID group proof is an extension of the yoking proof proving that multiple tags are scanned by a reader simultaneously. Existing group proof schemes provide only delayed tag loss detection which detects loss of tag response in a verification phase. However, delayed tag loss detection is not suitable for real-time applications where tag loss must be detected immediately. In this study, I propose a tag response loss detection scheme which detects loss of tag response in the proof generation process quickly. In the proposed scheme, the tag responds with the sequence number assigned to the tag group, and the reader detects the loss of the tag response through the sequence number. Through an experiment for indistinguishability, I show that the sequence number is secure against an analyzing message attack to distinguish between specific tags and tag groups. In terms of efficiency, the proposed scheme requires fewer transmissions and database operations than existing techniques to determine which tags response is lost.

Study on 2BP Distance Bounding Protocol to Prevent Relay Attack in RFID environment (RFID 환경에서 중계공격을 방지를 위한 2BP Distance Bounding 프로토콜 연구)

  • Jung, Youn-Sung;Kim, Hyeong-Ju;Lee, A-Young;Jun, Moon-Seog
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.892-895
    • /
    • 2012
  • RIFD 시스템은 개체 인증, 전자결제 등 다양한 분야에서 사용되고 있다. 무선통신의 특성상 악의적인 공격자로부터 중계공격이 가능하여 공격자가 정당한 사용자로 가장할 수 있다. 이러한 중계공격을 예방하기 위하여 Distance Bounding이라는 개념의 프로토콜이 제안되어 왔다. 하지만, 기존 연구는 태그 ID 전달의 기밀성을 보장하지만 ID 검색의 비효율성 및 불필요한 두 번째 저속 단계가 존재하는 단점이 있다. 따라서 본 논문은 ID의 검색 없고, 시도 값과 응답 값을 2bits로 하여 마지막 저속 단계를 생략하며, 고속 단계에서 공격자의 공격 탐지 및 Terrorist 공격에 대하여 $(1/2)^n$의 공격 성공률을 갖는 2BP(2Bit 2Phase) Distance Bounding 프로토콜을 제안한다.

Design of Crooked Wire Antennas for UHF Band RFID Reader (UHF 대역 RFID 리더용 Crooked Wire 안테나 설계)

  • Choo Jae-Yul;Choo Ho-Sung;Park Ik-Mo;Oh Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.5 s.96
    • /
    • pp.472-481
    • /
    • 2005
  • This paper reports the design of RFID reader antennas working in UHF band. The reader antennas were designed using a Pareto Genetic Algorithm(Pareto GA). Antennas were optimized to have circular polarization(CP) with less than 3 dB axial ratio, impedance matching with less than VSWR=2 within the frequency range of UHF, an adequate readable range, a restricted size(kr<2.22) considering the practical condition. After Pareto GA optimization, we selected and built the most suitable antenna design and compared the measured results to the simulations. Operating principle of the antenna was explained by investigating the amplitude and the phase of the induced current on the antenna body. We also researched the stability of the antenna with respect to the manufacturing error and studied the critical design parameters by applying the random error method on the antenna bent points.

Experimental Performance Evaluation according to the Sticked Backside Plate of Dipole Antenna for RFID Tag (RFID 태그용 다이폴 안테나의 부착 지판에 따른 실험적 성능 평가)

  • Min, Kyeong-Sik;Kim, Jin-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.273-281
    • /
    • 2007
  • This paper presented design for a dipole antenna operated at 900 MHz band RFID tag, and antenna performance varied by the sticked material was experimentally evaluated. When dipole antenna was sticked by the material having a difffrent electric characteristic such as dielectric material, fero-magnetic material and conductor, variations of antenna return loss and radiation pattern according to the sticked material kinds, size, and height between antenna and the sticked plate were experimentally observed and evaluated. When antenna was sticked by dielectric surface, the measured return loss and radiation pattern by affection of different dielectric permittivity ratio showed resonant frequency shift of about 40 MHz and relative attenuation of 1 dB to 3 dB. Even though frequency shift by size variation of the sticked plate was observed, the measured radiation pattern of dipole antenna located on the sticked plate was similar with one without backside plate. In the case of conductor or fero-magnetic material as the sticked ground plate, because of frequency shift and phase difference by distance between dipole antenna and the sticked ground plate, amplitude decrease of radiation pattern at 910 MHz was observed about 5 dB above.

Design of a Retrodirective Active Array Antenna for the LS Band (LS 밴드용 역지향성 능동배열 안테나 설계)

  • Chun Joong-Chang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.171-175
    • /
    • 2006
  • In this paper, we have developed a retrodirective active array operating in the 2 GHz LS band. The retrodirective array has the property of redirecting any electromagnetic wave back to the incoming direction without any priory informations. The system is integrated with phase conjugators and antenna array. Microwave phase conjugators can be implemented by microwave mixers. In this research, 2-port gate mixers using pHEMT and $1{\times}4$ monopole array have been used to achieve the retrodirectivity. The measured results have been compared with the theoretical prediction, and it has been shown that there exists a reasonable agreement between them. The monopole array can be used easily in many areas for simplicity and cost-effective property, and the retrodirective array developed in this research can be applied directly in the base station facilities for the wireless mobile communications. indoor wireless LAN and RFID transponders.

Hardware Design of the Synchronizer and the Demodulator of a 18000-3 PJM Mode Tag (18000-3 PJM 모드 태그의 동기부 및 복조부 하드웨어 설계)

  • Jeon, Don-Guk;Yang, Hoon-Gee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.2
    • /
    • pp.77-83
    • /
    • 2011
  • In this paper, we present the design procedure of the synchronizer and the demodulator of a 13.56MHz RFID PJM tag, which was standardized in ISO 18000-3 mode 3. We optimize the algorithms in order to minimize the number of registers and implement them based on international standard. The designed module is simulated by Modelsim and FPGA. The synchronizer is composed of 3 correlators that is implemented by 1,024(16bit ${\times}$ 64cycle) registers. The demodulator is composed of 2 correlators that is implemented by 128(2bit ${\times}$ 64cycle) registers. The simulation performed with the demodulator integrated with the synchronizer shows that it works at about 87% success rate with the test data of SNR -2dB and 100% with those of SNR 4dB.

Design of a Retrodirective Active Array Antenna in the LS band (LS밴드 역지향성 능동배열 안테나의 제작)

  • Chun, Joong-Chang;Kim, Tae-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.689-692
    • /
    • 2005
  • In this paper, we have developed a retrodirective active array operating in the 2 GHz LS band. The retrodirective array has the property of re-directing any electromagnetic wave back to the incoming direction without any priory informations. The system is consisted of frequency mixers and antenna array. The mixer is acting as a phase conjugator. In this research, 2-port gate mixers using pHEMT and 1${\times}$4 monopole array have been used. The retrodirective array developed in this research can be applied in the base station facilities for the wireless mobile communications and RFID transponders.

  • PDF

Self-Calibration for Direction Finding in Multi-Baseline Interferometer System (멀티베이스라인 인터페로미터 시스템에서의 자체 교정 방향 탐지 방법)

  • Kim, Ji-Tae;Kim, Young-Soo;Kang, Jong-Jin;Lee, Duk-Yung;Roh, Ji-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.4
    • /
    • pp.433-442
    • /
    • 2010
  • In this paper, self-calibration algorithm based on covariance matrix is proposed for compensating amplitude/phase mismatch in multi-baseline interferometer direction finding system. The proposed method is a solution to nonlinear constrained minimization problem which dramatically calibrate mismatch error using space sector concept with cost function as defined in this paper. This method, however, has a drawback that requires an estimated initial angle to determine the proper space sector. It is well known that this type of drawback is common in nonlinear optimization problem. Superior calibration capabilities achieved with this approach are illustrated by simulation experiments in comparison with interferometer algorithm for a varitiety of amplitude/phase mismatch error. Furthermore, this approach has been found to provide an exceptional calibration capabilities even in case amplitude and phase mismatch are more than 30 dB and over $5^{\circ}$, respectively, with sector spacing of less than $50^{\circ}$.