• Title/Summary/Keyword: RFID Anti Collision

Search Result 172, Processing Time 0.02 seconds

EPCglobal Gen 2 Tag Identification Performance Analysis Modifying the C model in the Q Algorithm (EPCglobal Gen 2 Q 알고리즘에서 C 모델에 따른 태그 인식 성능 평가)

  • Park, Jong-Myung;Cho, Sung-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1444-1451
    • /
    • 2009
  • This paper first proposes diverse C determining models in the Q algorithm which is proposed in the EPCglobal C1 Gen 2 standard and then compares and analyzes its performance. EPCglobal C1 Gen 2 standard proposes the slot-count (Q) selection algorithm for multiple tag identification environment, but there is no such definition for the C value which modifies the Q value depending on collision or no reply. During the tag anti-collision process, the Q algorithm adds C to the Q when there is a collision and reduces the Q by C when there is no reply. The modified Q value updates new slot-counts for tags which determines the tag identification speed, so the C value is an important factor. However, many researches only intend to increase the tag identification speed by proposing a new method or modifying the Q algorithm without any research about the C value. This paper suggests diverse C models which satisfies the EPCglobal C1 Gen 2 and analyzes their performance in the multi tag identification environment. The result of this paper can be used as an index for future researches on EPCglobal C1 Gen 2 C models and multiple tag identification performance.

An Anti-Collision Algorithm with 4-Slot in RFID Systems (RFID 시스템에서 4 슬롯을 이용한 충돌방지 알고리즘)

  • Kim, Yong-Hwan;Kim, Sung-Soo;Ryoo, Myung-Chun;Park, Joon-Ho;Chung, Kyung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.111-121
    • /
    • 2014
  • In this paper, we propose tree-based hybrid query tree architecture utilizing time slot. 4-Bit Pattern Slot Allocation(4-SL) has a 8-ary tree structure and when tag ID responses according to query of the reader, it applies a digital coding method, the Manchester code, in order to extract the location and the number of collided bits. Also, this algorithm can recognize multiple Tags by single query using 4 fixed time slots. The architecture allows the reader to identify 8 tags at the same time by responding 4 time slots utilizing the first bit($[prefix+1]^{th}$, F ${\in}$ {'0' or '1'}) and bit pattern from second ~ third bits($[prefix+2]^{th}{\sim}[prefix+3]^{th}$, $B_2{\in}$ {"00" or "11"}, $B_1{\in}$ {"01" or "10"}) in tag ID. we analyze worst case of the number of query nodes(prefix) in algorithm to extract delay time for recognizing multiple tags. The identification delay time of the proposed algorithm was based on the number of query-responses and query bits, and was calculated by each algorithm.