DOI QR코드

DOI QR Code

An Anti-Collision Algorithm with 4-Slot in RFID Systems

RFID 시스템에서 4 슬롯을 이용한 충돌방지 알고리즘

  • 김용환 (경운대학교 컴퓨터공학과) ;
  • 김성수 (경운대학교 모바일공학과) ;
  • 류명춘 (경운대학교 컴퓨터공학과) ;
  • 박준호 (경운대학교 컴퓨터공학과) ;
  • 정경호 (경운대학교 컴퓨터공학과)
  • Received : 2014.11.15
  • Accepted : 2014.12.03
  • Published : 2014.12.31

Abstract

In this paper, we propose tree-based hybrid query tree architecture utilizing time slot. 4-Bit Pattern Slot Allocation(4-SL) has a 8-ary tree structure and when tag ID responses according to query of the reader, it applies a digital coding method, the Manchester code, in order to extract the location and the number of collided bits. Also, this algorithm can recognize multiple Tags by single query using 4 fixed time slots. The architecture allows the reader to identify 8 tags at the same time by responding 4 time slots utilizing the first bit($[prefix+1]^{th}$, F ${\in}$ {'0' or '1'}) and bit pattern from second ~ third bits($[prefix+2]^{th}{\sim}[prefix+3]^{th}$, $B_2{\in}$ {"00" or "11"}, $B_1{\in}$ {"01" or "10"}) in tag ID. we analyze worst case of the number of query nodes(prefix) in algorithm to extract delay time for recognizing multiple tags. The identification delay time of the proposed algorithm was based on the number of query-responses and query bits, and was calculated by each algorithm.

본 논문에서는 트리 기반의 타임 슬롯을 사용한 하이브리드 쿼리 트리 구조를 제안한다. 제안 알고리즘은 8-ary tree 구조이며, 리더의 질의에 대한 태그 ID 응답 시, 디지털 코딩 방식을 Manchester 코드를 적용하여, 충돌 위치와 충돌 비트수를 검출할 수 있다. 또한 이 알고리즘은 고정된 4개의 슬롯을 사용하여, 한 번의 질의에 다수의 태그를 인식할 수 할 수 있다. 제안 알고리즘은 리더가 응답 받는 태그 ID의 첫 번째 비트 ($[prefix+1]^{th}$, F ${\in}$ {'0' or '1'})와 태그 ID의 두 번째 ~ 세 번째 비트($[prefix+2]^{th}{\sim}[prefix+3]^{th}$, $B_2{\in}$ {"00" or "11"}, $B_1{\in}$ {"01" or "10"})에서 비트 충돌 패턴을 이용해 4개의 타임 슬롯에 응답하게 함으로써, 한 번에 8개의 태그를 인식할 수 있다. 본 논문은 알고리즘의 질의 노드(prefix) 수의 worst case를 분석하여 다중 태그를 인식하는데 걸리는 지연 시간을 추출한다. 제안 알고리즘의 인식 지연 시간은 질의-응답 수와 질의 비트 수를 기준으로 하며, 각 알고리즘의 수식을 바탕으로 산출하였다.

Keywords

References

  1. K. Finkenzeller, "RFID Hand Book : Fundamentals and Applications in Contactless Smart Card and Identification, 2nd Ed.," Chicester, Sussex, U. K., WILEY, pp. 13-21, 2003.
  2. Y. Kim, " N-ary Query Tree Algorithm for Anti-collision in RFID System," Doctoral dissertation, Graduate School of Kyungpook National University, Feb, 2013.
  3. D. W. Engels and S. E. Sarma, "The Reader Collision Problem," In Proceedings of IEEE International Conference on System, Man and Cybernetics, Hammamet, Vol. 3, Oct, 2002.
  4. J. Waldrop, D. W. Engels, and S. E. Sarma, "Colorwave: An Anticollision Algorithm for the Reader Collision," In proceedings of IEEE International Conference on Communications, Vol. 2, pp. 1206-1210, May, 2003.
  5. S. Sarma, D. Brock, and D. Engels, "Radio Frequency Identification and the Electronic Product Code," IEEE Micro, vol. 21, no. 6, pp. 50-54, Nov/Dec, 2001. https://doi.org/10.1109/40.977758
  6. Y. Kim, M. Ryoo, J. Park, "Anti-Collision Algorithm for Improvement of Multiple Tag Identification in RFID System," Journal of Korea Society of IT Services, Vol. 12, No. 3, pp. 331-343, Sep, 2013. https://doi.org/10.9716/KITS.2013.12.3.331
  7. Y. Kim, S. Kim, S. Lee, and K. Ahn, "Improved 4-ary Query Tree Algorithm for Anti-Collision in RFID System," International Conference on Advanced Information Networking and Applications, pp. 699-704, May, 2009.
  8. C. Law, K. Lee, and K. Y. Siu, "Efficient Memoryless protocol for Tag Identification," Proceedings of the 4th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, ACM, pp. 75-84, Aug, 2000.
  9. J. Myung, W. Lee, "Adaptive Binary Splitting: A RFID Tag Collision Arbitration Protocol for Tag Identification," IEEE International Conference on Broadband Networks, Vol. 1, pp. 347-355, Oct, 2005.
  10. D. Baek, S. Kim, K. Ahn, "A Fast Tag Prediction Algorithm using Extra Bit in RFID System," Journal of the Korea Society of Computer and Information, Vol. 13, No. 5, pp. 255-261, Sep, 2008.
  11. J. Cha, J. Kim, "Dynamic framed slotted ALOHA algorithms using fast tag estimation method for RFID system," Consumer Communications and Networking Conference, Vol. 2, pp. 768-772, Jan, 2006.
  12. J. Eom, T. Lee, R. Rietman, A. Yener, "An efficient framed-slotted ALOHA algorithm with pilot frame and binary selection for anti-collision of RFID tags," IEEE Communications Letters, vol. 12, no. 11, pp. 861-863, Nov, 2008. https://doi.org/10.1109/LCOMM.2008.081157
  13. L. Zhu, T. -S. P. Yum, "A Critical Survey and Analysis of RFID Anti-Collision Mechanisms," IEEE Communications Magazine, vol. 49, no. 5, pp. 214-221, May, 2011. https://doi.org/10.1109/MCOM.2011.5762820
  14. S. Kim, T. Yun, "An Anti Collision Algorithm Using Efficient Separation in RFID system," Journal of the Korea Society of Computer and Information, Vol. 18, No. 11, pp. 87-97, Nov, 2013. https://doi.org/10.9708/jksci.2013.18.11.087
  15. J, Ryu, H. Lee, Y. Seok, T. Kwon, Y. Choi, "A Hybrid Approach to Arbitrate Tag Collisions in RFID systems," Journal of KIISE, Vol. 34, No. 6, pp. 483-492, Dec, 2007.
  16. S. Kim, Y. Kim, K. Ahn, "An Enhanced Slotted Binary Tree Algorithm with Intelligent Separation in RFID Systems," the Fourteenth IEEE Symposium on Computers and Communications, pp. 237-242, July, 2009
  17. J. Myung, W. Lee, "Adaptive Binary Splitting: A RFID Tag Collision Arbitration Protocol for Tag Identification," ACM/Springer Mobile networks and Applications, vol. 11, no. 5, pp. 711-722, Oct, 2006. https://doi.org/10.1007/s11036-006-7797-6
  18. D. Shih, P. Sun, D. C. Y, S. M. Huang, "Taxonomy and Survey of RFID Anti-collision protocols," Computer Communications, vol. 29, no. 11, pp. 2150-2166, July, 2006. https://doi.org/10.1016/j.comcom.2005.12.011
  19. GS1: EPCglobal Tag Data Standards Version 1.6, http://www.gs1.org/gsmp/kc/epcglobal/tds/tds_1_6-RatifiedStd-20110922.pdf
  20. Y. Kim, S. Kim, K. Chung, K. Ahn, "A RFID Tag Anti-Collision Algorithm Using 4-Bit Pattern Slot Allocation Method," Journal of the Korean Society for Internet Information, Vol. 14, No. 4, pp. 25-33, Aug, 2013.