• Title/Summary/Keyword: RF signal

Search Result 1,130, Processing Time 0.026 seconds

Implementation of Self-Interference Signal Cancelation System in RF/Analog for In-Band Full Duplex (동일대역 전이중 통신을 위한 RF/아날로그 영역에서의 자기간섭 신호 제거 시스템 구현)

  • Lee, Jiho;Chang, Kapseok;Kim, Youngsik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.277-283
    • /
    • 2016
  • In this paper, a system of self-interference signal cancelation for in-band full duplex has been implemented and tested in RF/analog region. The system performance has been evaluated with NI5791 platform and NI Flex RIO. Due to the low power level of the NI5791, the RF signal is amplified by SKYWORKS SE2565T power amplifier. A circulator is used to feed the antenna both the transmitter and receiver. The RF FIR filter is designed by twelve delay taps in two different groups, and the interval between each delay tap is designed to have 100 ps. The amplified signal is distributed to antenna and the FIR filter by use of a 10 dB directional coupler. The tap coefficients of the RF FIR filter are tuned to estimate the self-interference signal coming from antenna reflection and the leakage of the circulator, and the self-interference signal is subtracted. The system is test with 802.11a/g 20 MHz OFMD at 2.56 GHz, and the output power of the amplifier of 0 dBm. The self-interference signal is canceled out by 53 dB.

Estimation of I/Q Imbalance Parameters for Repeater using Direct Conversion RF with Low Pass Filter Mismatch (저역 통과 필터 불일치를 포함한 직접 변환 RF 중계기의 I/Q 불균형 파라미터 추정)

  • Yun, Seonhui;Lee, Kyuyong;Ahn, Jaemin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.18-26
    • /
    • 2015
  • In this paper, we studied the method for analyzing and estimating the parameters that induce I/Q imbalance in the repeater using direct conversion RF. In repeater, amplitude, phase, and filter mismatch are generated in the receiving-end which converts RF signal to baseband signal. And amplitude and phase mismatch are generated in the transmitting-end which converts baseband signal to RF signal. Accordingly, we modeled the parameters that cause I/Q imbalance in the structure of the repeater in order, and proposed a feedback test structure from the transmitting-end to the receiving-end for estimating the corresponding parameters. By comparing the test transmitting signal and received signal, it is possible to estimate the I/Q imbalance parameters which occurred from mixed components of real and imaginary part. And it was confirmed that I/Q imbalance phenomenon has been properly compensated with estimated parameters at the direct conversion RF repeater.

Analysis of Galileo GIOVE-A E1 Signal and RF Front-End Bandwidth Effects (갈릴레오 GIOVE-A E1 신호 분석 및 RF 프론트엔드 대역폭 영향 분석)

  • Lee, Byung-Hyun;Im, Sung-Hyuck;Jee, Gyu-In;Ko, Sun-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.767-773
    • /
    • 2008
  • Galileo is a new civil Global Navigation Satellite System(GNSS) developed by Europe. GIOVE-A, a satellite to test Galileo system performance, transmits navigation signal on orbit. Evaluation of Galileo system and development of Galileo receiver needs to analyze GIOVE-A signals. In this paper, we received GIOVE-A signals and processed it using GIOVE-A Interface Control Document(ICD). Signal acquisition, tracking and navigation message decoding made grasping current signal status possible. Bandwidth increase by BOC modulation is one of the difference from GPS. Therefore, we investigated feasibility of conventional GPS L1 RF front-end to receive GIOVE-A E1 signal by evaluation of receiving performance of navigation signal on each bandpass filter of RF front-end.

Design and Implementation of Multi-Channel WLL RF-module for Multimedia Transmission (멀티미디어 전송을 위한 무선가입자용 RF-모듈의 설계 및 제작)

  • Kim, Sang-Tae;Shin, Chull-Chai
    • Journal of IKEEE
    • /
    • v.3 no.2 s.5
    • /
    • pp.186-195
    • /
    • 1999
  • In this paper, the RF-modules composed of front-end, frequency synthesizer, modulator/demodulator and power control multi channel WLL personal system for W-CDMA using 10 [MHz] RF channel bandwidth has been implemented and considered. The measured transmission power is 250 [mW] which is very close to the required value. The measured flatness of power at the final output stage is ${\pm}1.5[dB]$ over the required bandwidth of the receiver. In addition, it is found that the chip rate transmitting spread signal is set to 8.192 [MHz], the required rate. The frequencies of RF_LO signal and LO signal of the modulator and the demodulator measured by a frequency synthesizer are satisfied with design requirements. The operating range of the receiving strength signal indicator and AGC units shows 60 [dB] respectively. Also the measured phasor diagram and eye pattern for deciding the RF modules compatible with baseband digital signal processing part are shown good results.

  • PDF

Implementation of Intelligent Measurement System of InterModulation Distorted RF Signals (지능형 누설왜곡전파신호 측정시스템 개발)

  • Kim, Dong-hyeon;Seo, Na-Hyeon;Park, Ki-Won;Rhee, Young-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.144-149
    • /
    • 2017
  • In this paper, we developed an intelligent and wideband RF-receiver module to represent a high dynamic range and good linearity characteristics up to 650MHz-2700MHz frequency band. and implemented an intelligent digital-RF- distorted signal measuring system for the RF distortion (intermodulation) signals. Broadband RF-receive module was designed to represent the optimized linear parameters of the receiver to meet the low noise and wide dynamic range. The designed intelligent digital-distortion(intermodulation) signal measument system measured by applying the 1MHz IF of third intermodulation signal of DUT and Measured data was recorded by program on the PC monitor with GUI interface. By variable up to 650MHz-2700MHz measured data showed up to -127.8dBc to -138dBc of the distortion (intermodulation) signal. And developed intelligent digital- distortion signal measurement system can be used to measure intermodulation distortion signal of wireless system widely.

A Study on Implementation of a Short Distance Wireless Transceiver System with Commercial RF Module (상용 RF 모듈을 이용한 근거리 무선 송수신 시스템 구현에 관한 연구)

  • 차용성;강성진;강병권
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.53-56
    • /
    • 2000
  • 본 논문에서는 ISM 대역에서 동작하는 상용화된 RF 모듈을 사용하여 근거리 통신용 송수신 시스템을 구현하고 그 특성을 측정하였다. 기저 대역 데이터를 발생시켜 RF 모듈에 연결하여 전송하고, 수신측에서는 RF 모듈에서 복조된 데이터를 오실로스코우프를 사용하여 확인하였다. 본 실험에서 사용한 RF 모듈은 424MHz부터 429MHz까지의 영역에서 동작하며, FM 방식을 사용한다. 본 대학의 산학협동관 건물내에서 측정한 결과 거리에 따른 신호 감쇠와 신호 수신 감도를 파악할 수 있었으며, 이를 이용하여 건물 내에서의 근거리 통신에 적용할 수 있음을 확인하였다.

  • PDF

Efficient Drone Detection method using a Radio-Frequency (RF를 이용한 효과적인 드론 탐지 기법)

  • Choi, Hong-Rak;Jeong, Won-Ho;Kim, Kyung-Seok
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.26-33
    • /
    • 2017
  • A drone performs a mission through remote control or automatic control, which uses wireless communications technology. Recently the increasing use of drones, the drone signal RF detection is necessary. In this paper, we propose an efficient dron RF detection method through simulations considering Wi-Fi, Bluetooth and dedicated protocol dron communication method in ISM(Industry Science Medical) band.. After configuring an environment where a common terminal and a drone signal are mixed, a general terminal and a drone signal are distinguished from each other by using a RF characteristic according to a dron movement. The proposed drone RF detection method is the WRMD(Windowed RSSI Moving Detection) operation and the Doppler frequency identification method. The simulation environments consist to mixed for two signals and four signals. We analysis the performance to proposed drone RF detection technique thorough detection rate.

Monopulse Receiver Design with Adaptive Transmission Speed on Ku-Band (적응형 전송속도를 갖는 Ku-대역 모노펄스 수신기 설계)

  • Jeong, Byeoung-Koo;Lee, Dae-Hong;Joo, Tae-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.500-507
    • /
    • 2018
  • A three-channel radio frequency (RF) monopulse receiver using a data signal with a maximum transmission rate of 274 Mbps was designed. A monopulse receiver using a broadband communication signal was designed to operate in the Ku band, and it consists of a down-conversion module and a signal-processing module. To satisfy the performance of the proposed RF monopulse receiver, a signal-processing function less than the reception sensitivity for each transmission rate according to the adaptive transmission rate is required. To minimize signal reception and mutual frequency interference of various bandwidths, two RF filters were applied. To verify the satisfaction of system requirements, an AWR Corp. simulation tool was used.

Study on the Broadband RF Front-End Architecture (광대역 RF 전단부 구조에 관한 연구)

  • Go, Min-Ho;Pyo, Seung-Chul;Park, Hyo-Dal
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.183-189
    • /
    • 2009
  • In this paper, we propose RF front-end architecture using hybrid conversion method to receive broadband signal. The validity is verified by design, fabrication and experiment. The proposed RF front-end architecture due to up-conversion block improves the deficiency of performance deterioration to be generated through harmonic signal and image signal conversion in the conventional RF front-end, and improves the deficiency of the complexity that is from to adopt a multiple local oscillators for the generation of wideband LO signal in the conventional RF front-end by applying the principle that tuning bandwidth is multiplied at sub-harmonic mixer. Manufactured circuits satisfy the deduced design specification and target standard with gain above 80 dB, noise figure below 6.0 dB and IIP3 performance above -5.0 dBm for the condition of the minimum gain in RF front-end.

  • PDF

SSD(Simultaneous Single Band Duplex) System Using RF Cancellation and Digital Cancellation (RF Cancellation과 Digital Cancellation을 사용한 SSD(Simultaneous Single Band Duplex) 시스템)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.2
    • /
    • pp.100-108
    • /
    • 2014
  • In this paper, we design SSD(simultaneous single band duplex) system using RF(radio frequency) cancellation and digital cancellation. we analyze characteristic of residual self-interference after RF Cancellation signal when error of phase shifter occur in RF cancellation. When phase shifter error of $0^{\circ}$, $0.5^{\circ}$, $1^{\circ}$ and $2^{\circ}$ occur in RF cancellation, residual self-interference signal power after RF cancellation is bigger than desired signal power of distant station. So, it is impossible to receive transmit data of distant station. but we confirm that it is possible to receive transmit data of distant station by digital cancellation with frame structure. Also, in digital cancellation with frame structure, if residual self-interference signal after RF cancellation is too large then LMS algorithm requires more time to estimate self-interference channel. That is, performance degradation occurs because self-interference channel estimation has not completed in estimation frame.