• Title/Summary/Keyword: RF plasma processing

Search Result 83, Processing Time 0.03 seconds

Large Area Plasma Characteristics using Internal Linear ICP (Inductively Coupled Plasma) Source for the FPD processing

  • Kim, Kyong-Nam;Lim, Jong-Hyeuk;Yeom, Geun-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.544-547
    • /
    • 2006
  • In this study, the characteristics of large area internal linear ICP sources of $1,020mm{\times}920mm$ (substrate area is $880mm{\times}660mm$) were investigated using a multiple linear antennas with U-type parallel connection. Using the multiple linear antennas with U-type parallel connection, a high plasma density of $2{\times}10^{11}/cm^3$ and a high power transfer efficiency of about 88% could be obtained at 5kW of RF power and with 20mTorr Ar. A low plasma potential of less than 26V and a low electron temperature of $2.6{\sim}3.2eV$ could be also obtained. The measured plasma uniformity on the substrate size of 4th generation $(880mm{\times}660mm)$ was about 4%, therefore, it is believed that the multiple linear antennas with U-type parallel connection can be successfully applicable to the large area flat panel display processing.

  • PDF

Development of Internal linear Inductively Coupled Plasma Sources for Large Area Flat Penal Display Processing

  • Lim, Jong-Hyeuk;Park, Jung-Kyun;Kim, Kyong-Nam;Yeom, Geun-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.933-936
    • /
    • 2007
  • An inductively coupled plasma source with internaltype linear inductive antennas named as "multiple Utype antenna" was developed for the substrate size of $2,300mm\;{\times}\;2,000mm$. High density plasmas on the order of $1.18\;{\times}\;10^{11}\;cm^{-3}$ could be obtained and the RF power of 8kW with good plasma stability.

  • PDF

OPTICAL EMISSION SPECTROSCOPY OF Ch$_4$/Ar/H$_2$ GAS DISCHARGES IN RF PLASMA CVD OF HYDROGENATED AMORPHOUS CARBON FILMS

  • Lee, Sung-Soo;Osamu Takai
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.648-653
    • /
    • 1996
  • Hydrogenated amorphous carbon(a-C:H) films are prepared by rf plasma CVD in a $CH_4$ source gas system diluted with Ar of $H_2$. The spectra of emissive and reactive species in the plasma are detected using in stiu optical emission spectroscopy. Inaddition, the relationship between the film properties which can be varied by the deposition parameters and the Raman spectra is studied. In the $CH_4/H_2$ gas system, the emission intensities of CH and $H \tau$ decrease and those of $H \alpha$, $H \beta$, $C_2$ and Ar increase with increasing $H_2$ concentration, The formation of $C_2$ and CH in the $CH_4/Ar/H_2$ gas system is greatly suppressed by hydrogen addition and the excess of hydrogen addition is found to form graphite structure. The $C_2$ formation in the gas phase enhances a-C:H film formation.

  • PDF

Electrical Characteristics of Antenna for Electrodeless Fluorescent Lamp Using the Electromagnetic Simulation (무전극 형광램프용 안테나 설계를 위한 전기적 특성 시뮬레이션)

  • Her, In-Sung;Kim, Kwang-Soo;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.61-64
    • /
    • 2004
  • Recently, the RF inductive discharge or inductively coupled plasma (ICP) continues to attract growing attention as an effective plasma source in many industrial applications, the best known of which are plasma processing and lighting technology. To the point of lighting sources, the electrodeless fluorescent lamps utilizing an inductively coupled plasma (ICP) have been objects of interest and research during the last decades, mainly because of their potential for extremely long life, high lamp efficacies, rapid power switching response. The electrodeless fluorescent lamp that is dealt with in this work comprises a bulb filled with rare gas and amalgam of vaporizable metal and has a coil provided with a winding around the ferrite. Current through a coil produces a magnetic field in the discharge space. The changing magnetic flux then produces an azimuthal electric field E around the coil, according to Faraday's laws of magnetic induction.

  • PDF

Study on Validity and Reliablity of the Cutoff Probe and Langmuir Probe via Comparative Experiment in the Processing Plasma

  • Kim, D.W.;You, S.J.;You, K.H.;Lee, J.W.;Kim, J.H.;Chang, H.Y.;Oh, W.Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.576-576
    • /
    • 2013
  • Recently, diagnostics of plasma becomes more important due to requirement of precise control of plasma processing based on measurement of plasma characteristics. The Langmuir probe has been used for the diagnostics but it has an inevitable uncertainty and error sources such as incorrect tip length and RF noise. Instead of the Langmuir probe, various diagnostic methods have been developed and researched. The cutoff probe is promising one for plasma density using microwaves and resonance phenomenon at the plasma frequency. The cutoff probe has various advantages as follows; (i) it is simple and robust, (ii) it uses few assumptions, and (iii) it is free from deposition by reactive gas. However, the cutoff probe also has uncertainty and error sources such as gap between tips, tip length, direction of tip plane, and RF noise. In this study, the uncertainty and error sources in manufacturing both probes and in diagnostics process were analyzed via comparative experiment at various discharge conditions. Furthermore, to reveal the user dependence of both probes, three well trained Ph. D students made the Langmuir probe and the cutoff probe, respectively, and it were analyzed. Thought this study, it is established that reliability and validity of the Langmuir probe and the cutoff probe related with not only the intrinsic characteristics of probes but also probe user.

  • PDF

Effects of Phase Difference between Voltage loaves Applied to Primary and Secondary Electrodes in Dual Radio Frequency Plasma Chamber

  • Kim, Heon-Chang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.2 s.11
    • /
    • pp.11-14
    • /
    • 2005
  • In plasma processing reactors, it is common practice to control plasma density and ion bombardment energy by manipulating excitation voltage and frequency. In this paper, a dually excited capacitively coupled rf plasma reactor is self-consistently simulated with a three moment model. Effects of phase differences between primary and secondary voltage waves, simultaneously modulated at various combinations of commensurate frequencies, on plasma properties are investigated. The simulation results show that plasma potential and density as well as primary self-dc bias are nearly unaffected by the phase lag between the primary and the secondary voltage waves. The results also show that, with the secondary frequency substantially lower than the primary frequency, secondary self·do bias remains constant regardless of the phase lag. As the secondary frequency approaches to the primary frequency, however, the secondary self-dc bias becomes greatly altered by the phase lag, and so does the ion bombardment energy at the secondary electrode. These results demonstrate that ion bombardment energy can be more carefully controlled through plasma simulation.

  • PDF

2D Kinetic Simulation of Partially Magnetized Capacitively Coupled Plasma Sources (2차원 동역학 시뮬레이션을 활용한 부분적으로 자화된 용량성 결합 플라즈마 전산 모사)

  • Sung Hyun Son;Junbeom Park;Kyoung-Jae Chung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.118-123
    • /
    • 2023
  • Partially magnetized capacitively coupled plasma (CCP) sources are investigated using a two-dimensional kinetic simulation code named EDIPIC-2D. A converging numerical solution was obtained for CCP with a 60 MHz power source, while properly capturing the dynamics of electrons and power absorption over a single RF period. The effects of magnetic fields with different orientations were evaluated. Axial magnetic fields caused changes in the spatial distribution of plasma density, affecting the loss channel. Transverse magnetic fields enhanced stochastic heating near the powered electrode, leading to an increase in plasma density while the significant E×B drift loss compensated for this rise.

  • PDF

Atmospheric Plasma and Its Applications (대기압 플라즈마와 응용)

  • Uhm Han-Sup
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.117-138
    • /
    • 2006
  • Plasmas can be made by electrical discharge on earth. Most of the plasmas on earth have been generated in low pressure environments where the pressure is less than one millionth of the atmospheric pressure. However, there are many plasma applications which require high pressure plasmas. Therefore, scientists start research on plasma generation at high pressure to avoid use of expensive vacuum equipments. Large-volume inexpensive plasmas are needed in the areas of material processing, environmental protection and improvement, efficient energy source and applications, etc. We therefore developed new methods of plasma generations at high pressure and carried out research of applying these plasmas to high tech industries representing 21 century. These research fields will play pivotal roles in material, environmental and energy science and technology in future.

Large Area Plasma for LCD Processing by Individyally Controlled Array Sources

  • Kim, Bong-Joo;Kim, Chin-Woo;Park, Se-Geun;Lee, Jong-Geun;Lee, Seung-Ul;Lee, Il-Hang;O, Beom-Hoan
    • Journal of Information Display
    • /
    • v.3 no.2
    • /
    • pp.26-30
    • /
    • 2002
  • Large area plasma source has been built for LCD etcher by an array of $2{\times}2$ ICP sources. Since only one RF power supply and one impedance matching network is used in this configuration, any difference in impedances of unit RF antennas causes unbalanced power delivery to the unit ICP. In order to solve this unavoidable unbalance, unit antenna is designed to have a movable tap, with which the inductance of each unit can be adjusted individually. The plasma density becomes symmetric and etch rate becomes more uniform with the impedance adjustment. The concept of adding axial time-varying magnetic field to the single ICP source is applied to the array ICP source, and is found to be effective in terms of etch rate and uniformity.

Abatement of CF4 Using RF Plasma with Annular Shape Electrodes Operating at Low Pressure (환상형상 전극구조를 갖는 저압 RF plasma를 이용한 CF4 제거)

  • Lee, Jae-Ok;Hur, Min;Kim, Kwan-Tae;Lee, Dae-Hoon;Song, Young-Hoon;Lee, Sang-Yun;Noh, Myung-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.690-696
    • /
    • 2010
  • Abatement of perfluorocompounds (PFCs) used in semiconductor and display industries has received an attention due to the increasingly stricter regulation on their emission. In order to meet this circumstance, we have developed a radio frequency (RF) driven plasma reactor with multiple annular shaped electrodes, characterized by an easy installment between a processing chamber and a vacuum pump. Abatement experiment has been performed with respect to $CF_4$, a representative PFCs widely used in the plasma etching process, by varying the power, $CF_4$ and $O_2$ flow rates, $CF_4$ concentration, and pressure. The influence of these variables on the $CF_4$ abatement was analyzed and discussed in terms of the destruction & removal efficiency (DRE), measured with a Fourier transform infrared (FTIR) spectrometer. The results revealed that DRE was enhanced with the increase in the discharge power and pressure, but dropped with the $CF_4$ flow rate and concentration. The addition of small quantity of $O_2$ lead to the improvement of DRE, which, however, leveled off and then decreased with $O_2$ flow rate.