• Title/Summary/Keyword: RF negative ion source

Search Result 9, Processing Time 0.025 seconds

Discharge Characteristics of Large-Area High-Power RF Ion Source for Neutral Beam Injector on Fusion Devices

  • Chang, Doo-Hee;Park, Min;Jeong, Seung Ho;Kim, Tae-Seong;Lee, Kwang Won;In, Sang Ryul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.241.1-241.1
    • /
    • 2014
  • The large-area high-power radio-frequency (RF) driven ion sources based on the negative hydrogen (deuterium) ion beam extraction are the major components of neutral beam injection (NBI) systems in future large-scale fusion devices such as an ITER and DEMO. Positive hydrogen (deuterium) RF ion sources were the major components of the second NBI system on ASDEX-U tokamak. A test large-area high-power RF ion source (LAHP-RaFIS) has been developed for steady-state operation at the Korea Atomic Energy Research Institute (KAERI) to extract the positive ions, which can be used for the NBI heating and current drive systems in the present fusion devices, and to extract the negative ions for negative ion-based plasma heating and for future fusion devices such as a Fusion Neutron Source and Korea-DEMO. The test RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region. RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for the stable and steady-state operations of RF discharge. The characteristics and uniformities of the plasma parameter in the RF ion source were measured at the lowest area of the expansion bucket using two RF-compensated electrostatic probes along the direction of the short- and long-dimensions of the expansion region. The plasma parameters in the expansion region were characterized by the variation of loaded RF power (voltage) and filling gas pressure.

  • PDF

Development of RF Ion Source for Neutral Beam Injector in Fusion Devices

  • Jang, Du-Hui;Park, Min;Kim, Seon-Ho;Jeong, Seung-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.550-551
    • /
    • 2013
  • Large-area RF-driven ion source is being developed at Germany for the heating and current drive of ITER plasmas. Negative hydrogen (deuterium) ion sources are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen ions have been successfully developed at IPP (Max-Planck- Institute for Plasma Physics, Garching) for ASDEX-U and W7-AS neutral beam injection (NBI) systems. In recent, the first NBI system (NBI-1) has been developed successfully for the KSTAR. The first and second long-pulse ion sources (LPIS-1 and LPIS-2) of NBI-1 system consist of a magnetic bucket plasma generator with multi-pole cusp fields, filament heating structure, and a set of tetrode accelerators with circular apertures. There is a development plan of large-area RF ion source at KAERI to extract the positive ions, which can be used for the second NBI (NBI-2) system of KSTAR, and to extract the negative ions for future fusion devices such as ITER and K-DEMO. The large-area RF ion source consists of a driver region, including a helical antenna (6-turn copper tube with an outer diameter of 6 mm) and a discharge chamber (ceramic and/or quartz tubes with an inner diameter of 200 mm, a height of 150 mm, and a thickness of 8 mm), and an expansion region (magnetic bucket of prototype LPIS in the KAERI). RF power can be transferred up to 10 kW with a fixed frequency of 2 MHz through a matching circuit (auto- and manual-matching apparatus). Argon gas is commonly injected to the initial ignition of RF plasma discharge, and then hydrogen gas instead of argon gas is finally injected for the RF plasma sustainment. The uniformities of plasma density and electron temperature at the lowest area of expansion region (a distance of 300 mm from the driver region) are measured by using two electrostatic probes in the directions of short- and long-dimension of expansion region.

  • PDF

Development of Large-Area RF Ion Source for Neutral Beam Injector in Fusion Devices

  • Chang, Doo-Hee;Jeong, Seung Ho;Kim, Tae-Seong;Park, Min;Lee, Kwang Won;In, Sang Ryul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.179.2-179.2
    • /
    • 2013
  • A large-area RF-driven ion source is being developed at Germany for the heating and current drive of ITER device. Negative hydrogen ion sources are major components of neutral beam injection (NBI) systems in future large-scale fusion experiments such as ITER and DEMO. The RF sources for the production of positive hydrogen ions have been successfully developed at IPP (Max-Planck-Institute for Plasma Physics), Garching, for the ASDEX-U and W7-AS neutral beam heating systems. Ion sources of the first NBI system (NBI-1) for the KSTAR tokamak have been developed successfully with a bucket plasma generator based on the filament arc discharge, which have contributed to achieve a good plasma performance such as 15 sec H-mode operation with an injection of 3.5 MW NB power. There is a development plan of RF ion source at the KAERI to extract the positive ions, which can be used for the second NBI system (NBI-2) of the KSTAR and to extract the negative ions for future fusion devices such as Fusion Neutron Source and Korea-DEMO. The development progresses of RF ion source at the KAERI are described in this presentation.

  • PDF

Development of a distributed high-speed data acquisition and monitoring system based on a special data packet format for HUST RF negative ion source

  • Li, Dong;Yin, Ling;Wang, Sai;Zuo, Chen;Chen, Dezhi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3587-3594
    • /
    • 2022
  • A distributed high-speed data acquisition and monitoring system for the RF negative ion source at Huazhong University of Science and Technology (HUST) is developed, which consists of data acquisition, data forwarding and data processing. Firstly, the data acquisition modules sample physical signals at high speed and upload the sampling data with corresponding absolute-time labels over UDP, which builds the time correlation among different signals. And a special data packet format is proposed for the data upload, which is convenient for packing or parsing a fixed-length packet, especially when the span of the time labels in a packet crosses an absolute second. The data forwarding modules then receive the UDP messages and distribute their data packets to the real-time display module and the data storage modules by PUB/SUB-pattern message queue of ZeroMQ. As for the data storage, a scheme combining the file server and MySQL database is adopted to increase the storage rate and facilitate the data query. The test results show that the loss rate of the data packets is within the range of 0-5% and the storage rate is higher than 20 Mbps, both acceptable for the HUST RF negative ion source.

Simulations for the cesium dynamics of the RF-driven prototype ion source for CRAFT N-NBI

  • Yalong Yang;Yong Wu;Lizhen Liang;Jianglong Wei;Rui Zhang;Yahong Xie;Wei Liu;Chundong Hu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1145-1152
    • /
    • 2024
  • To realize an initial objective of the negative ion-based neutral beam injection (N-NBI) at the Comprehensive Research Facility for Fusion Technology (CRAFT) test facility, which targets an H0 beam power of 2 MW at an energy of 200-400 keV and a pulse duration of 100 s, it is crucial to study the cesium dynamics of the negative ion source. Here a numerical simulation program CSFC3D is developed and applied to simulate the distribution and time dynamics of cesium during short pulses. The calculations show that most of the cesium on the plasma grid (PG) area originates from the release of cesium that is accumulated within the ion source in the plasma phase. Increasing the wall temperature reduces the loss of cesium on the wall of the ion source. Furthermore, the thickness of the cesium monolayer is directly influenced by the PG temperature. Both simulated and experimental results demonstrate that maintaining the PG temperature between 180 ℃ and 200 ℃ is essential for enhancing the performance of the ion source and optimizing the cesium behavior.

A Study on the Characteristics of Sputter ion Plating by ion Energy Analysis (이온 에너지 분석에 의한 Sputter Ion Plating의 동작 특성 연구)

  • Sung, Y.M.;Lee, C.Y.;Cho, J.S.;Park, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.228-230
    • /
    • 1994
  • A Spotter ion Plating(SIP) system with a r. f. coil electrode and the Facing Target Sputter(FTS) source was designed for high-quality thin film formation. The rf discharge was combined with DC facing target sputtering in order to enhance ionization degree of a sputtered atoms. The discharge voltage-discharge characteristics curves of a FTS source could be characterized by the fern of $I{\propto}V^n$ with n in the range of $8{\sim}12$. The energy of ions incident on the substrate depended on the sheath potential of DC biased substrate. The mean impact ion energy increased with negative bias voltage and rf power. The adhesive force of the TiN film formed was in the range of $30{\sim}50N$, and markedly influenced by substrate bias voltage.

  • PDF

A Study on the Relationships between Substrate Bias Potential and Ion Energy Distributions (이온 플레이팅에서 기판 BIAS 전위와 이온 에너지 분포와의 상관관계 연구)

  • Sung, Y.M.;Shin, J.H.;Son, J.B.;Cho, J.S.;Park, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.472-474
    • /
    • 1995
  • A Sputter ion Plating(SIP) system with a r.f. coil electrode and the Facing Target Sputter(FTS) source was designed for high-quality thin film formation. The rf discharge was combined with DC facing target sputtering in order to enhance ionization degree of a sputtered atoms. The energy of ions incident on the substrate depended on the health potential of DC biased substrate. The mean impact ion energy increased with negative bias voltage and rf power. The adhesive force of the TiN film formed was in the range of 30$\sim$50N, and markedly influenced by substrate bias voltage.

  • PDF

XPS STUDY ON SN-DOPED DLC FILMS PREPARED BY RF PLASMA-ENHANCED CVD

  • Inoue, Y.;Komoguchi, T.;Nakata, H.;Takai, O.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.519-524
    • /
    • 1996
  • We synthesized semiconducting Sn-doped diamondlike carbon films by rf plasma-enhanced chemical vapor deposition using an organotin compound as a dopung gas source. XPS quan-titative analysis for the deposited films after 60 s argon ion etching revealed that Sn concen-tration increased with the partial pressure of the organotin compound in the reactant gas. In C 1s spectra, there was a component due to C-Su bond which had a negative chemical shift. C 1s spectra also indicated that the deposited films were relatively $sp^2$ rich. The chemical shift of the Sn-C bond in Sn $3d_{5/2}$ spectra was about +1.7 eV. The electrical resistivity and the optical transmittance were also investigated.

  • PDF

Microfabrication of Submicron-size Hole on the Silicon Substrate using ICP etching

  • Lee, J.W.;Kim, J.W.;Jung, M.Y.;Kim, D.W.;Park, S.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.79-79
    • /
    • 1999
  • The varous techniques for fabrication of si or metal tip as a field emission electron source have been reported due to great potential capabilities of flat panel display application. In this report, 240nm thermal oxide was initially grown at the p-type (100) (5-25 ohm-cm) 4 inch Si wafer and 310nm Si3N4 thin layer was deposited using low pressure chemical vapor deposition technique(LPCVD). The 2 micron size dot array was photolithographically patterned. The KOH anisotropic etching of the silicon substrate was utilized to provide V-groove formation. After formation of the V-groove shape, dry oxidation at 100$0^{\circ}C$ for 600 minutes was followed. In this procedure, the orientation dependent oxide growth was performed to have a etch-mask for dry etching. The thicknesses of the grown oxides on the (111) surface and on the (100) etch stop surface were found to be ~330nm and ~90nm, respectively. The reactive ion etching by 100 watt, 9 mtorr, 40 sccm Cl2 feed gas using inductively coupled plasma (ICP) system was performed in order to etch ~90nm SiO layer on the bottom of the etch stop and to etch the Si layer on the bottom. The 300 watt RF power was connected to the substrate in order to supply ~(-500)eV. The negative ion energy would enhance the directional anisotropic etching of the Cl2 RIE. After etching, remaining thickness of the oxide on the (111) was measured to be ~130nm by scanning electron microscopy.

  • PDF