• Title/Summary/Keyword: RF monitoring system

Search Result 180, Processing Time 0.027 seconds

Sex Pheromone Composition for Field-trapping of Dichocrocis punctiferalis (Lepidoptera: Pyralidae) Males (최적의 야외유인을 위한 복숭아명나방(Dichocrocis punctiferalis)의 성페로몬 조성)

  • 정진교;한경식;최광식;부경생
    • Korean journal of applied entomology
    • /
    • v.39 no.2
    • /
    • pp.105-110
    • /
    • 2000
  • Sex pheromone composition was analyzed for Dichocrocis punctiferalis, which attacksapple, peach, chestnut fruits, etc., and its behavioral and field trapping studies were conducted to developa monitoring system with its sex pheromone. Virgin females showed maximum mating behavior andhairpencil extrusion behavior between 4-5 hrs after lights-off under 16L18D photoperiod and 26rf 1 "C.During this period, two sex pheromone components, ElO-hexadecenal and ZlO-hexadecenal, weredetected by GC analysis in the hexane extract of abdominal tips of virgin females. The best attraction ofmales to various synthetic sex pheromone blends was obtained at the 70 : 30 ratio of ElO-hexadecenal andZ10-hexadecenal for hair pencil extrusion and at the 80 : 20 ratio for flying upwind response. The highestattractiveness in fields was obtained between 70 : 30 and 80 : 20 from several tests in apple, peach andchestnut orchards.and chestnut orchards.

  • PDF

Design of Wideband RF Frequency Measurement System with EP2AGX FPGA (EP2AGX FPGA를 이용한 광대역 고주파신호의 주파수 측정장치 설계)

  • Lim, Joong-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.7
    • /
    • pp.1-6
    • /
    • 2017
  • This paper presents the design of a frequency measurement device using ADC, EP2AGX FPGA and STM32 processor to accurately measure the frequency of a broadband high frequency signal. The ADC device used in this paper has a sampling frequency of 250 MSPS and a processing frequency bandwidth of 100 MHz. Due to its high sampling frequency, it is difficult to process in ordinary computers or processors, so we implemented the frequency measurement algorithm using the Altra EP2AGX FPGA. The measured frequency is sent to the direction detection controller in real time and fused with the phase signal to calculate the incident azimuth angle of the high frequency signal. The designed frequency measurement device is about 0.2 Mhz in frequency measurement error and 30% less than Anaren DFD-x, which is considered to contribute greatly to the design of radio monitoring and direction detection device.

Study on Design of Advanced Smart Postural Change Device for Supine Posture Control (와상체위제어를 위한 스마트 고기능 자세변환기의 설계에 관한 연구)

  • Park, Seung Hwan;Jung, Jin Taek;Sim, Woo Jung;Kim, Yung Sear
    • 재활복지
    • /
    • v.18 no.4
    • /
    • pp.221-235
    • /
    • 2014
  • Recently, the frequency of stroke disease is increased due to the rapid aging population, and is contributed to the major occurrence factors of the posteriori acquired disability. This study is about an postural change device for the control of supine posture which is an assisted equipment using in daily rehabilitation process for overcoming the disability by the aftereffects of the stoke disease. In this paper, the existing domestic and Japan postural appliances is examined and its comparison and categorization is performed according to its functions and purposes. Here, in order to control the supine posture state, the design method for advanced multi functional system is proposed, which is devised to have an unified mattress control operations of combining the bedsore prevention tube with the supine posture tilting tube. And also, in addition of an smart function, it is designed to enable to perform an RF functions such as the monitoring of the present device state, the alteration of the basic position and the control of alternative floating and supine posture. This system control hardware consists of three main parts : the sensor detection part, the motor driving /control part, and the system control part for bluetooth communication. In results, we confirmed that the system designed by this research is possible to make it practical as an advanced smart postural change device combined by IoT technology in the application field of the recent IT technology.

Construction of X-band automatic radar scatterometer measurement system and monitoring of rice growth (X-밴드 레이더 산란계 자동 측정시스템 구축과 벼 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.374-383
    • /
    • 2010
  • Microwave radar can penetrate cloud cover regardless of weather conditions and can be used day and night. Especially a ground-based polarimetric scatterometer has advantages of monitoring crop conditions continuously with full polarization and different frequencies. Kim et al. (2009) have measured backscattering coefficients of paddy rice using L-, C-, X-band scatterometer system with full polarization and various angles during the rice growth period and have revealed the necessity of near-continuous automatic measurement to eliminate the difficulties, inaccuracy and sparseness of data acquisitions arising from manual operation of the system. In this study, we constructed an X-band automatic scatterometer system, analyzed scattering characteristics of paddy rice from X-band scatterometer data and estimated rice growth parameter using backscattering coefficients in X-band. The system was installed inside a shelter in an experimental paddy field at the National Academy of Agricultural Science (NAAS) before rice transplanting. The scatterometer system consists of X-band antennas, HP8720D vector network analyzer, RF cables and personal computer that controls frequency, polarization and data storage. This system using automatically measures fully-polarimetric backscattering coefficients of rice crop every 10 minutes. The backscattering coefficients were calculated from the measured data at a fixed incidence angle of $45^{\circ}$ and with full polarization (HH, VV, HV, VH) by applying the radar equation and compared with rice growth data such as plant height, stem number, fresh dry weight and Leaf Area Index (LAI) that were collected at the same time of each rice growth parameter. We examined the temporal behaviour of the backscattering coefficients of the rice crop at X-band during rice growth period. The HH-, VV-polarization backscattering coefficients steadily increased toward panicle initiation stage, thereafter decreased and again increased in early-September. We analyzed the relationships between backscattering coefficients in X-band and plant parameters and predicted the rice growth parameters using backscattering coefficients. It was confirmed that X-band is sensitive to grain maturity at near harvesting season.

Web-based Measurement of ECU Signals on Vehicle using Embedded Linux

  • Choi, Kwang-Hun;Lee, Lee;Lee, Young-Choon;Kwon, Tae-Kyu;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.138-142
    • /
    • 2004
  • In this paper, we present a new method for monitoring of ECU's sensor signals of vehicle. In order to measure the ECU's sensor signals, the interfaced circuit is designed to communicate ECU and the Embedded Linux is used to monitor communication result through Web the Embedded Linux system and this system is said "ECU Interface Part". In ECU Interface Part the interface circuit is designed to match voltage level between ECU and SA-1110 micro controller and interface circuit to communicate ECU according to the ISO, SAE communication protocol standard. Because Embedded Linux does not allow to access hardware directly in application level, anyone who wants to modify any low level hardware must develop device driver. To monitor ECU's sensor signals the most important thing is to match serial level between ECU and ECU Interface Part. It means to communicate correctly between two hardware we need to match voltage and signal level, and need to match baudrate. The voltage of SA-1110 is 0 ${\sim}$ +3.3V and ECU is 0 ${\sim}$ +12V and, ECU's communication Line K does multiple operation so, the interface circuit is used to match voltage and signal level. In Addition to ECU's baudrate is 10400bps, it's not standard baudrate in computer environment. So, we need to develop a device driver to control the interface circuit, and change baudrate. To monitor ECU's sensor signals through web there's a network socket program is working in Embedded Linux. It works as server program and manages user's connections and commands. Anyone who wants to monitor ECU's sensor signals he just only connect to Embedded Linux system with web browser then, Embedded Linux webserver will return the ActiveX webbased measurement software. It works in web browser and inits ECU, as a result it returns sensor signals through web. All the programs are developed with GCC(GNU C Compiler) and, webbased measurement software is developed with Borland C++ Builder.

  • PDF

IoT Open-Source and AI based Automatic Door Lock Access Control Solution

  • Yoon, Sung Hoon;Lee, Kil Soo;Cha, Jae Sang;Mariappan, Vinayagam;Young, Ko Eun;Woo, Deok Gun;Kim, Jeong Uk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.8-14
    • /
    • 2020
  • Recently, there was an increasing demand for an integrated access control system which is capable of user recognition, door control, and facility operations control for smart buildings automation. The market available door lock access control solutions need to be improved from the current level security of door locks operations where security is compromised when a password or digital keys are exposed to the strangers. At present, the access control system solution providers focusing on developing an automatic access control system using (RF) based technologies like bluetooth, WiFi, etc. All the existing automatic door access control technologies required an additional hardware interface and always vulnerable security threads. This paper proposes the user identification and authentication solution for automatic door lock control operations using camera based visible light communication (VLC) technology. This proposed approach use the cameras installed in building facility, user smart devices and IoT open source controller based LED light sensors installed in buildings infrastructure. The building facility installed IoT LED light sensors transmit the authorized user and facility information color grid code and the smart device camera decode the user informations and verify with stored user information then indicate the authentication status to the user and send authentication acknowledgement to facility door lock integrated camera to control the door lock operations. The camera based VLC receiver uses the artificial intelligence (AI) methods to decode VLC data to improve the VLC performance. This paper implements the testbed model using IoT open-source based LED light sensor with CCTV camera and user smartphone devices. The experiment results are verified with custom made convolutional neural network (CNN) based AI techniques for VLC deciding method on smart devices and PC based CCTV monitoring solutions. The archived experiment results confirm that proposed door access control solution is effective and robust for automatic door access control.

Reference values for respiratory system impedance using impulse oscillometry in healthy preschool children

  • Park, Jye-Hae;Yoon, Jung-Won;Shin, Youn-Ho;Jee, Hye-Mi;Wee, Young-Sun;Chang, Sun-Jung;Sim, Jung-Hwa;Yum, Hye-Yung;Han, Man-Yong
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.2
    • /
    • pp.64-68
    • /
    • 2011
  • Purpose: The normal values for lung resistance and lung capacity of children, as determined by impulse oscillometry (IOS), are different for children of different ethnicities. However, reference values there is no available reference value for Korean preschool children have yet to be determined. The aim of the present study was to determine the normal ranges of IOS parameters in Korean preschool children. Methods: A total of 133 healthy Korean preschool children were selected from 639 children (aged 3 to 6 years) who attended kindergarten in Seongnam, Gyeonggi province, Korea. Healthy children were defined according to the European Respiratory Society (ERS) criteria. All subjects underwent lung function tests using IOS. The relationships between IOS value (respiratory resistance (Rrs) and reactance (Xrs) at 5 and 10 Hz and resonance frequency (RF)) and age, height, and weight were analyzed by simple linear and multiple linear regression analyses. Results: The IOS success rate was 89.5%, yielding data on 119 children. Linear regression identified height as the best predictor of Rrs and Xrs. Using stepwise multiple linear regressions based on age, height, and weight, we determined regression equations and coefficients of determination ($R^2$) for boys ($Rrs_5=1.934-0.009{\times}Height$, $R^2$=12.1%; $Xrs_5=0.774+0.006{\times}Height-0.002{\times}Age$, $R^2$=20.2% and for girls $(Rrs_5=2.201-0.012{\times}Height$, $R^2$=18.2%; $Xrs_5=-0.674+0.004{\times}Height$, $R^2$=10.5%). Conclusion: This study provides reference values for IOS measurements of normal Korean preschool children. These provide a basis for the diagnosis and monitoring of preschool children with a variety of respiratory diseases.

In vitro evaluation of nano zinc oxide (nZnO) on mitigation of gaseous emissions

  • Sarker, Niloy Chandra;Keomanivong, Faithe;Borhan, Md.;Rahman, Shafiqur;Swanson, Kendall
    • Journal of Animal Science and Technology
    • /
    • v.60 no.11
    • /
    • pp.27.1-27.8
    • /
    • 2018
  • Background: Enteric methane ($CH_4$) accounts for about 70% of total $CH_4$ emissions from the ruminant animals. Researchers are exploring ways to mitigate enteric $CH_4$ emissions from ruminants. Recently, nano zinc oxide (nZnO) has shown potential in reducing $CH_4$ and hydrogen sulfide ($H_2S$) production from the liquid manure under anaerobic storage conditions. Four different levels of nZnO and two types of feed were mixed with rumen fluid to investigate the efficacy of nZnO in mitigating gaseous production. Methods: All experiments with four replicates were conducted in batches in 250 mL glass bottles paired with the ANKOM$^{RF}$ wireless gas production monitoring system. Gas production was monitored continuously for 72 h at a constant temperature of $39{\pm}1^{\circ}C$ in a water bath. Headspace gas samples were collected using gas-tight syringes from the Tedlar bags connected to the glass bottles and analyzed for greenhouse gases ($CH_4$ and carbon dioxide-$CO_2$) and $H_2S$ concentrations. $CH_4$ and $CO_2$ gas concentrations were analyzed using an SRI-8610 Gas Chromatograph and $H_2S$ concentrations were measured using a Jerome 631X meter. At the same time, substrate (i.e. mixed rumen fluid+ NP treatment+ feed composite) samples were collected from the glass bottles at the beginning and at the end of an experiment for bacterial counts, and volatile fatty acids (VFAs) analysis. Results: Compared to the control treatment the $H_2S$ and GHGs concentration reduction after 72 h of the tested nZnO levels varied between 4.89 to 53.65%. Additionally, 0.47 to 22.21% microbial population reduction was observed from the applied nZnO treatments. Application of nZnO at a rate of $1000{\mu}g\;g^{-1}$ have exhibited the highest amount of concentration reductions for all three gases and microbial population. Conclusion: Results suggest that both 500 and $1000{\mu}g\;g^{-1}$ nZnO application levels have the potential to reduce GHG and $H_2S$ concentrations.

Bioconcentration Factor(BCF) of Perchlorate from Agricultural Products and Soils (농산물과 토양에 대한 퍼클로레이트 함량 평가 및 생물농축계수 산출)

  • Kim, Ji-Young;Kim, Min-Ji;Lee, Jeong-Mi;Kim, Doo-Ho;Park, Ki-Moon;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.224-230
    • /
    • 2013
  • BACKGROUND: Perchlorate(${ClO_4}^-$) is an anion that is extremely water-soluble and environmentally stable. It mostly exists in the form of sodium perchlorate, ammonium perchlorate and potassium perchlorate which are used in rocket fuels, propellants, ignitable sources, air bag inflation systems and explosives. Perchlorate can be taken into the thyroid glands and interfere with iodide uptake. The determination of perchlorate in agricultural products is important due to its potential health impact on humans. The objective of this study was to determine the perchlorate concentrations in the samples of various agricultural products and soils. METHODS AND RESULTS: In this study, samples of cereal(Rice, Barley, Corn, Bean), vegetable(Spinach, Lettuce, Sesame, Chives, Chili, Pumpkin, Tomato), fruit(Apple, Pear, Tangerine, Grape) were analyzed for perchlorate contents. Perchlorate concentrations were analyzed by liquid chromatography-tandem mass spectrometry. The results showed that agricultural products respectively contained perchlorate concentrations in the range of : cereals N.D.~$7.46{\mu}g/kg$, vegetables $0.52{\sim}23.06{\mu}g/kg$, fruits $0.19{\sim}2.66{\mu}g/kg$. Bioconcentration factor was in the order of : vegetables > cereals > fruits. Bioconcentration factor was highest follwed by Sesame 37.88, Corn 21.51, Spinach 10.57, Tangerine 4.39, Chives 2.89 and Lettuce 1.90. The recoveries of perchlorate from spiked agricultural products and soils ranged from 87.72~111.26% and 102.09~111.23%. CONCLUSION(S): The health risk assessment results obtained in this study are lower than the RfD(Reference Dose, 0.0007 mg/kg/body weight/day) value as suggested by the Integrated Risk Information System(US IRIS). Our results indicate that, people currently exposed to perchlorate from agricultural products consumption are considered as safe.

Monitoring soybean growth using L, C, and X-bands automatic radar scatterometer measurement system (L, C, X-밴드 레이더 산란계 자동측정시스템을 이용한 콩 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol;Lee, Jae-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.191-201
    • /
    • 2011
  • Soybean has widely grown for its edible bean which has numerous uses. Microwave remote sensing has a great potential over the conventional remote sensing with the visible and infrared spectra due to its all-weather day-and-night imaging capabilities. In this investigation, a ground-based polarimetric scatterometer operating at multiple frequencies was used to continuously monitor the crop conditions of a soybean field. Polarimetric backscatter data at L, C, and X-bands were acquired every 10 minutes on the microwave observations at various soybean stages. The polarimetric scatterometer consists of a vector network analyzer, a microwave switch, radio frequency cables, power unit and a personal computer. The polarimetric scatterometer components were installed inside an air-conditioned shelter to maintain constant temperature and humidity during the data acquisition period. The backscattering coefficients were calculated from the measured data at incidence angle $40^{\circ}$ and full polarization (HH, VV, HV, VH) by applying the radar equation. The soybean growth data such as leaf area index (LAI), plant height, fresh and dry weight, vegetation water content and pod weight were measured periodically throughout the growth season. We measured the temporal variations of backscattering coefficients of the soybean crop at L, C, and X-bands during a soybean growth period. In the three bands, VV-polarized backscattering coefficients were higher than HH-polarized backscattering coefficients until mid-June, and thereafter HH-polarized backscattering coefficients were higher than VV-, HV-polarized back scattering coefficients. However, the cross-over stage (HH > VV) was different for each frequency: DOY 200 for L-band and DOY 210 for both C and X-bands. The temporal trend of the backscattering coefficients for all bands agreed with the soybean growth data such as LAI, dry weight and plant height; i.e., increased until about DOY 271 and decreased afterward. We plotted the relationship between the backscattering coefficients with three bands and soybean growth parameters. The growth parameters were highly correlated with HH-polarization at L-band (over r=0.92).