• Title/Summary/Keyword: RF micro Switches

Search Result 12, Processing Time 0.015 seconds

A Disparate Low Loss DC to 90 GHz Wideband Series Switch

  • Gogna, Rahul;Jha, Mayuri;Gaba, Gurjot Singh;Singh, Paramdeep
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.92-97
    • /
    • 2016
  • This paper presents design and simulation of wide band RF microswitch that uses electrostatic actuation for its operation. RF MEMS devices exhibit superior high frequency performance in comparison to conventional devices. Similar techniques that are used in Very Large Scale Integration (VLSI) can be employed to design and fabricate MEMS devices and traditional batch-processing methods can be used for its manufacturing. The proposed switch presents a novel design approach to handle reliability concerns in MEMS switches like dielectric charging effect, micro welding and stiction. The shape has been optimized at actuation voltage of 14-16 V. The switch has an improved restoring force of 20.8 μN. The design of the proposed switch is very elemental and primarily composed of electrostatic actuator, a bridge membrane and coplanar waveguide which are suspended over the substrate. The simple design of the switch makes it easy for fabrication. Typical insertion and isolation of the switch at 1 GHz is -0.03 dB and -71 dB and at 85 GHz it is -0.24 dB and -29.8 dB respectively. The isolation remains more than - 20 db even after 120 GHz. To our knowledge this is the first demonstration of a metal contact switch that shows such a high and sustained isolation and performance at W-band frequencies with an excellent figure-of merit (fc=1/2.pi.Ron.Cu =1,900 GHz). This figure of merit is significantly greater than electronic switching devices. The switch would find extensive application in wideband operations and areas where reliability is a major concern.

A 4-bit optical true time-delay for phased array antennas using 2×2 optical MEMS switches and fiber-optic delay lines (2×2 광 MEMS 스위치와 광섬유 지연선로를 이용한 위상배열 안테나용 4-비트 광 실시간 지연선로)

  • 정병민;윤영민;신종덕;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.385-390
    • /
    • 2004
  • In this paper, we designed a 4-bit optical true time-delay(TTD) for phased array antennas(PAAs), which is composed of a wavelength-fixed optical source, 2 ${\times}$ 2 optical MEMS switches, and fiber-optic delay lines. A 4-bit TTD with a unit time delay difference of 6 ps for 10-GHz PAAs has been implemented. Measurement results on time delay show an error of -0.4 ps at maximum, corresponding to a radiation angle error of less than 1.63$^{\circ}$. Thus, the TTD implemented in this research performs in excellent agreement with theory. Each TTD line, composed of MEMS switches and fiber-optic delay lines, connected to the corresponding antenna element has insertion loss in between 1.36 ㏈ and 2.40 ㏈ depending upon the setup of the switches. On the other hand, the insertion loss difference between TTD lines was 0.32 ㏈ at maximum for a fixed radiation angle. The TTD structure proposed in this paper might be more reliable and economical than those previously proposed using tunable wavelength sources if proper power equalization either with gain control of RF amplifiers or variable attenuators is achieved.