• 제목/요약/키워드: RF magnetron sputter deposition

검색결과 86건 처리시간 0.027초

Flexibility Improvement of InGaZnO Thin Film Transistors Using Organic/inorganic Hybrid Gate Dielectrics

  • Hwang, B.U.;Kim, D.I.;Jeon, H.S.;Lee, H.J.;Lee, N.E.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.341-341
    • /
    • 2012
  • Recently, oxide semi-conductor materials have been investigated as promising candidates replacing a-Si:H and poly-Si semiconductor because they have some advantages of a room-temperature process, low-cost, high performance and various applications in flexible and transparent electronics. Particularly, amorphous indium-gallium-zinc-oxide (a-IGZO) is an interesting semiconductor material for use in flexible thin film transistor (TFT) fabrication due to the high carrier mobility and low deposition temperatures. In this work, we demonstrated improvement of flexibility in IGZO TFTs, which were fabricated on polyimide (PI) substrate. At first, a thin poly-4vinyl phenol (PVP) layer was spin coated on PI substrate for making a smooth surface up to 0.3 nm, which was required to form high quality active layer. Then, Ni gate electrode of 100 nm was deposited on the bare PVP layer by e-beam evaporator using a shadow mask. The PVP and $Al_2O_3$ layers with different thicknesses were used for organic/inorganic multi gate dielectric, which were formed by spin coater and atomic layer deposition (ALD), respectively, at $200^{\circ}C$. 70 nm IGZO semiconductor layer and 70 nm Al source/drain electrodes were respectively deposited by RF magnetron sputter and thermal evaporator using shadow masks. Then, IGZO layer was annealed on a hotplate at $200^{\circ}C$ for 1 hour. Standard electrical characteristics of transistors were measured by a semiconductor parameter analyzer at room temperature in the dark and performance of devices then was also evaluated under static and dynamic mechanical deformation. The IGZO TFTs incorporating hybrid gate dielectrics showed a high flexibility compared to the device with single structural gate dielectrics. The effects of mechanical deformation on the TFT characteristics will be discussed in detail.

  • PDF

철강 위에 SiC 중간층을 사용한 나노결정질 다이아몬드 코팅 (Nanocrystalline Diamond Coating on Steel with SiC Interlayer)

  • 명재우;강찬형
    • 한국표면공학회지
    • /
    • 제47권2호
    • /
    • pp.75-80
    • /
    • 2014
  • Nanocrystalline diamond(NCD) films on steel(SKH51) has been investigated using SiC interlayer film. SiC was deposited on SKH51 or Si wafer by RF magnetron sputter. NCD was deposited on SiC at $600^{\circ}C$ for 0.5~4 h employing microwave plasma CVD. Film morphology was observed by FESEM and FIB. Film adherence was examined by Rockwell C adhesion test. The growth rate of NCD on SiC/Si substrate was much higher than that on SiC/SKH51. During particle coalescence, NCD growth rate was slow since overall rate was determined by the diffusion of carbon on SiC surface. After completion of particle coalescence, NCD growth became faster with the reaction of carbon on NCD film controlling the whole process. In the case of SiC/SKH51 substrate, a complete NCD film was not formed even after 4 h of deposition. The adhesion test of NCD/SiC/SKH51 samples revealed a delamination of film whereas that of SiC/SKH51 showed a good adhesion. Many voids of less than 0.1 ${\mu}m$ were detected on NCD/SiC interface. These voids were believed as the reason for the poor adhesion between NCD and SiC films. The origin of voids was due to the insufficient coalescence of diamond particles on SiC surface in the early stage of deposition.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Optimization of Amorphous Indium Gallium Zinc Oxide Thin Film for Transparent Thin Film Transistor Applications

  • Shin, Han Jae;Lee, Dong Ic;Yeom, Se-Hyuk;Seo, Chang Tae
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.352.1-352.1
    • /
    • 2014
  • Indium Tin Oxide (ITO) films are the most extensively studied and commonly used as ones of TCO films. The ITO films having a high electric conductivity and high transparency are easily fabricated on glass substrate at a substrate temperature over $250^{\circ}C$. However, glass substrates are somewhat heavy and brittle, whereas plastic substrates are lightweight, unbreakable, and so on. For these reasons, it has been recently suggested to use plastic substrates for flexible display application instead of glass. Many reaearchers have tried to produce high quality thin films at rood temperatures by using several methods. Therefore, amorphous ITO films excluding thermal process exhibit a decrease in electrical conductivity and optical transparency with time and a very poor chemical stability. However the amorphous Indium Gallium Zinc Oxide (IGZO) offers several advantages. For typical instance, unlike either crystalline or amorphous ITO, same and higher than a-IGZO resistivity is found when no reactive oxygen is added to the sputter chamber, this greatly simplifies the deposition. We reported on the characteristics of a-IGZO thin films were fabricated by RF-magnetron sputtering method on the PEN substrate at room temperature using 3inch sputtering targets different rate of Zn. The homogeneous and stable targets were prepared by calcine and sintering process. Furthermore, two types of IGZO TFT design, a- IGZO source/drain material in TFT and the other a- ITO source/drain material, have been fabricated for comparison with each other. The experimental results reveal that the a- IGZO source/drain electrode in IGZO TFT is shown to be superior TFT performances, compared with a- ITO source/drain electrode in IGZO TFT.

  • PDF

GaAs 나노입자 크기에 따른 SiO2 혼합박막의 구조적 광학적 특성 (The Structural and Optical Properties of GaAs- SiO2 Composite Thin Films With Varying GaAs Nano-particle Size)

  • 이성훈;김원목;신동욱;조성훈;정병기;이택성;이경석
    • 한국재료학회지
    • /
    • 제12권4호
    • /
    • pp.296-303
    • /
    • 2002
  • For potential application to quantum mechanical devices, nano-composite thin films, consisting of GaAs quantum dots dispersed in SiO$_2$ glass matrix, were fabricated and studied in terms of structural, chemical, and optical properties. In order to form crystalline GaAs quantum dots at room temperature, uniformly dispersed in $SiO_2$matrix, the composite films were made to consist of alternating layers of GaAs and $SiO_2$in the manner of a superlattice using RF magnetron sputter deposition. Among different film samples, nominal thickness of an individual GaAs layer was varied with a total GaAs volume fraction fixed. From images of High Resolution Transmission Electron Microscopy (HRTEM), the formation of GaAs quantum dots on SiO$_2$was shown to depend on GaAs nominal thickness. GaAs deposits were crystalline and GaAs compound-like chemically according to HRTEM and XPS analysis, respectively. From measurement of optical absorbance using a spectrophotometer, absorption edges were determined and compared among composite films of varying GaAs nominal thicknesses. A progressively larger shift of absorption edge was noticed toward a blue wavelength with decreasing GaAs nominal thickness, i.e. quantum dots size. Band gaps of the composite films were also determined from Tauc plots as well as from PL measurements, displaying a linear decrease with increasing GaAs nominal thickness.

RF Sputtering의 증착 조건에 따른 HfO2 박막의 Nanocrystal에 의한 Nano-Mechanics 특성 연구 (Nano-mechanical Properties of Nanocrystal of HfO2 Thin Films for Various Oxygen Gas Flows and Annealing Temperatures)

  • 김주영;김수인;이규영;권구은;김민석;엄승현;정현진;조용석;박승호;이창우
    • 한국진공학회지
    • /
    • 제21권5호
    • /
    • pp.273-278
    • /
    • 2012
  • 현재 Hf (Hafnium)을 기반으로한 게이트 유전체의 연구는 여러 분야에서 다양하게 진행되어져 왔다. 이는 기존의 $SiO_2$보다 유전상수 값이 크고, 또한 계속되는 scaling-down 공정에서도 양자역학적인 터널링을 차단하는 특성이 뛰어나기 때문이다. MOSFET 구조에서 유전체 박막의 두께 감소로 인한 전기적 특성 저하를 보완하기 위해서 high-K 재료가 대두되었고 현재 주를 이루고 있다. 그러나 현재까지 $HfO_2$에 대한 nano-mechanical 특성 연구는 부족한 상태이므로 본 연구에서는 게이트 절연층으로 최적화하기 위하여 $HfO_2$ 박막의 nano-mechanical properties를 자세히 조사하였다. 시료는 rf magnetron sputter를 이용하여 Si (silicon) 기판 위에 Hafnium target으로 산소유량(4, 8 sccm)을 달리하여 증착하였고, 이후 furnace에서 400에서 $800^{\circ}C$까지 질소분위기에서 20분간 열처리를 실시하였다. 실험결과 산소 유량을 8 sccm으로 증착한 시료가 열처리 온도가 증가할수록 누설전류 특성 성능이 우수 해졌다. Nano-indenter로 측정하고 Weibull distribution으로 정량적 계산을 한 결과, $HfO_2$ 박막의 stress는 as-deposited 시료를 기준으로 $400^{\circ}C$에서는 tensile stress로 변화되었다. 그러나 온도가 증가(600, $800^{\circ}C$)할수록 compressive stress로 변화 되었다. 특히, $400^{\circ}C$ 열처리한 시료에서 hardness 값이 (산소유량 4 sccm : 5.35 GPa, 8 sccm : 5.54 GPa) 가장 감소되었다. 반면에 $800^{\circ}C$ 열처리한 시료에서는(산소유량 4 sccm : 8.09 GPa, 8 sccm : 8.17 GPa) 크게 증가된 것을 확인하였다. 이를 통해 온도에 따른 $HfO_2$ 박막의 stress 변화를 해석하였다.