• Title/Summary/Keyword: RF discharge

Search Result 225, Processing Time 0.024 seconds

Plasma Density Measurement of Linear Atmospheric Pressure DBD Source Using Impedance Variation Method (임피던스 변화를 이용한 선형 대기압 DBD 플라즈마 밀도 측정)

  • Shin, Gi Won;Lee, Hwan Hee;Kwon, Hee Tae;Kim, Woo Jae;Seo, Young Chul;Kwon, Gi-Chung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.16-19
    • /
    • 2018
  • The development speed of semiconductor and display device manufacturing technology is growing faster than the development speed of process equipment. So, there is a growing need for process diagnostic technology that can measure process conditions in real time and directly. In this study, a plasma diagnosis was carried out using impedance variation due to the plasma discharge. Variation of the measurement impedance appears as a voltage change at the reference impedance, and the plasma density is calculated using this. The above experiment was conducted by integrating the plasma diagnosis system and the linear atmospheric pressure DBD plasma source. It was confirmed that plasma density varies depending on various parameters (gas flow rate, $Ar/O_2$ mixture ratio, Input power).

CCP에서의 마이크로 아킹 Fast-imging을 통한 마이크로 아킹 방전 메커니즘 조사

  • Kim, Yong-Hun;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.276-277
    • /
    • 2012
  • 플라즈마 아킹은 PECVD, 플라즈마 식각 그리고 토카막과 같은 플라즈마를 이용하는 여러 공정과 연구 분야에서 문제가 되어왔다. 하지만, 문제의 중요성과 다르게 아킹에 대한 본질적인 연구는 아직 미비한 상태이다. 플라즈마 아킹은 집단전자방출(collective electron emission)에 의한 스파크 방전(spark discharge) 현상이다. 집단전자방출은 전계방출(field emission)이나 플라즈마와 쉬스를 두고 인접한 표면위에서의 유전분극(dielec emission)에 의해 발생한다. 우리는 CCP 플라즈마를 이용해 micro-arcing(MA)을 일으키고 랑뮈르 프로브를 이용해 MA 동안의 플로팅 포텐셜의 변화를 측정한다. MA시 PM-tube를 이용해 광량의 변화를 측정하고 플로팅 포텐셜을 fast-imaging과 동기화 시켜 MA 발생 메커니즘을 유추한다. 우리는 $30{\times}20$ cm 크기의 사각 전극을 위 아래로 가진 챔버에서 Ar 가스를 RF (13.56 MHz) 파워를 이용해 방전시켰다. 방전 전압과 전류는 파워 전극 앞단에서 High voltage probe (Tektronix P6015A)와 Current probe (TCPA300 + TCP312)를 이용해 측정했다. 플라즈마 아킹시 변하는 플라즈마 플로팅 포텐셜은 챔버 중앙에 위치한 랑뮈프 프로브에 의해 측정되고 챔버 옆의 뷰포트 앞에 위치한 PM-tube를 이용해 아킹시 변하는 광량을 측정하고 Intensified CCD를 이용해 fast-imaging을 한다. 또한 CCD 앞에 band pass filter를 부착하여 MA의 발생 메커니즘을 유추한다. RF 방전에서의 플라즈마 아킹은 아킹시 플로팅 포텐셜의 변화에 의해 크게 세부분으로 나눌 수 있다. 아킹 발생과 동시에 급격히 감소하는 감소부분(약 2 us) 그리고 감소한 포텐셜이 유지되는 유지부분(약 0~10 ms) 그리고 감소했던 포텐셜이 서서히 원래 상태로 회복되는 회복부분(약 100 us)이다. 아킹 초기시 방출된 집단 전자들은 쉬스를 단락시키게 되고 이로 인해 플로팅 포텐셜은 급격히 감소하게 된다. 이렇게 감소한 플로팅 포텐셜은 아킹 스트리머가 유지되는 한 계속 감소한 상태를 유지하게 된다. 그리고 플라즈마를 섭동했던 집단전자방출이 중단되면 플라즈마는 섭동전의 원래 상태로 회복된다. 플라즈마 아킹 발생시 생성되는 순간적으로 많은 전자들을 국소적으로 생성하게 되고 이 전자들에 의해 광량이 순간적으로 증가하게 된다. PM-tube (750.4 nm)에 의해 측정된 아킹시 광량은 정상방전 상태의 두배 가량이 된다. 그리고 이 순간적으로 증가된 광량은 시간이 지남에 따라 감소하게 되고 정상방전 일때의 광량이 된다. 광량이 증가한 후 정상방전상태의 광량에 이르는 부분은 플로팅 포텐셜이 감소한 상태에서 유지되는 부분과 일치하고 이는 플로팅 포텐셜의 유지부분동안 집단전자방출이 있다는 간접적인 증거가 된다. 그리고 정상 방전 상태 일때의 광량이 되면 집단전자방출이 중단되었다는 것이므로 그 시점부터 플로팅 포텐셜은 정산 방전상태 일때의 포텐셜로 복구되기 시작한다. 이처럼 PM-tube를 이용한 아킹 광량 측정은 아킹 스트리머를 간접적으로 측정하게 하고 집단전자방출을 이용해 아킹 시의 플로팅 포텐셜의 변화를 설명하게 해 준다.

  • PDF

Electrochemical Characteristics of $V_2O_5$ based All Solid State Thin Film Microbattery by Ex-situ Sputtering Method (Ex-situ 스퍼터링법에 의한 $V_2O_5$ 전 고상 박막전지의 전기화학적 특성)

  • Lim Y.C.;Nam S.C.;Jeon E.J.;Yoon Y.S.;Cho W.I.;Cho B.W.;Chun H.S.;Yun K.S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.1
    • /
    • pp.44-48
    • /
    • 2000
  • Amorphous $V_2O_5$ cathode thin films were prepared by DC-magnetron sputtering at room temperature and the thin film rechargeable lithium batteries were fabricated with the configuration of $V_2O_5/LIPON/Li$ using sequential ex-situ thin film deposition techniques. The electrochemical characteristics of $V_2O_5$ cathode materials Prepared at 80/20 of $Ar/O_2$ ratio showed high capacity and cycling behaviors by half cell test. LIPON solid electrolytes films were prepared by RF-magnetron sputtering using the self-made $Li_3PO_4$ target in pure $N_2$ atmosphere, and it was very stable for lithium contact in the range of 1.2-4.0 V vs. Li. Metallic lithium were deposited on LIPON electrolyte by thermal evaporation methode in dry room. Vanadium oxide based full cell system showed the initial discharge capacity of $150{\mu}A/cm^2{\mu}m$ in the range of $1.2\~3.5V$.

Effect of RuO$_2$ Thin Film Microstructure on Characteristics of Thin Film Micro-supercapacitor ($RuO_2$박막의 미세 구조가 박막형 마이크로 슈퍼캐패시터의 특성에 미치는 영향)

  • Kim, Han-Ki;Yoon, Young-Soo;Lim, Jae-Hong;Cho, Won-Il;Seong, Tae-Yeon;Shin, Young-Hwa
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.671-678
    • /
    • 2001
  • All solid-state thin film micro supercapacitor, which consists of $RuO_2$/LiPON/$RuO_2$ multi layer structure, was fabricated on Pt/Ti/Si substrate using a $RuO_2$ electrode. Bottom $RuO_2$ electrode was grown by dc reactive sputtering system with increasing $O_2/[Ar+O_2]$ ratio at room temperature, and a LiPON electrolyte film was subsequently deposited on the bottom $RuO_2$ electrode at pure nitrogen ambient by rf reactive sputtering system. Room temperature charge-discharge measurements based on a symmetric $RuO_2$/LiPON/$RuO_2$ structure clearly demonstrates the cyclibility dependence on the microstructure of the $RuO_2$ electrode. Using both glancing angle x-ray diffraction (GXRD) and transmission electron microscopy (TEM) analysis, it was found that the microstructure of the $RuO_2$ electrode was dependent on the oxygen flow ratio. In addition, x- ray photoelectron spectroscopy(XPS) examination shows that the Ru-O binding energy is affected by increasing oxygen flow ratio. Furthermore, TEM and AES depth profile analysis after cycling demonstrates that the interface layer formed by interfacial reaction between LiPON and $RuO_2$ act as a main factor in the degradation of the cyclibility of the thin film micro-supercapacitor.

  • PDF

Fabrication and Characteristics of PIN Type Amorphous Silicon Solar Cell (PIN形 非晶質 硅素 太陽電池의 製作 및 特性)

  • Park, Chang-Bae;Oh, Sang-Kwang;Ma, Dae-Yeong;Kim, Ki-Wan
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.30-37
    • /
    • 1989
  • The PIN type a-SiC:H/a-Si:H heterojunction solar cells were fabricated by using the rf glow discharge decomposition of $SiH_4$ mixed with $CH_4,B_2,H_6\;and\;PH_3.$ The efficiency of the solar cell of the $SnO_2/ITO$ was higher than that of ITO transparent oxide layer by 1.5%. The P layer was prepared with the thickness of $100{\AA}$ and $CH_4/SiH_4$ ration of 5. The I layer has been deposited on the P layer and it is not pure intrinsic but near N type. So $SiH_4$ mixed with $B_2H_6$ of 0.3ppm was used to change this N type nature to intrinsic having the thickness of 5000${\AA}$. And consecutively, the N layer was deposited with t ethickness of $400{\AA}$ using $SiH_4/PH_3$ mixtures. The solar cell demonstrated 0.94V of $V_{oc'}$ 14.6mA/cm of $J_{sc}$ and 58.2% of FF, resulting the efficiency of 8.0%. To minimize loss by the reflection of light, $MgF_2$ layer was coated on the lgass and the efficiency was improved by 0.5%. Therefore, the solar cell indicated overall efficiency of 8.5%.

  • PDF

Characteristics of a-Si:H Multilayer for Contact-type Linear Image Sensor (밀착형 1차원 영상감지소자를 위한 a-Si:H 다층막의 특성)

  • Oh, Sang-Kwang;Kim, Ki-Wan;Choi, Kyu-Man
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.5-12
    • /
    • 1992
  • We have fabricated a-Si:H multilayer for contact-type linear image sensor by means of RF glow discharge decomposition method. The ITO/i-a-Si:H/Al structure has relatively high dark current due to indium diffusion and carrier injection from both electrodes, resulting in low photocurrent to dark current. To suppress the dark current and to enhance interface electric field between ITO and i-a-Si:H film we have fabricated ITO/insulator/i-a-S:H/p-a-S:H/Al multilayer film with blocking structure. The photocurrent of ITO/$SiO_{2}(300{\AA})$/i-a-Si:H/p-a-Si:H($1500{\AA}$)/Al multilayer sensor with 5V bias voltage became saturated at about 20nA under $20{\mu}W/cm^{2}$ light intensity, while the dark current was less than 0.1nA. To increase the light generation efficiency we have adopted ITO/$SiO_{x}N_{y}(300{\AA})$/i-a-Si:H/p-a-Si:H($1500{\AA}$)/Al structure, showing photocurrent of 30nA and dark current of 0.08nA with 5V bias voltage. Also the spectral photosensitivity of the multilayer was enhanced for short wavelength visible region of 560nm, compared with that of the a-Si:H monolayer of 630nm. And its photoresponse time was about 0.3msec with the film homogeneity of 5% deviation.

  • PDF

A Novel Approach for Controlling Process Uniformity with a Large Area VHF Source for Solar Applications

  • Tanaka, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.146-147
    • /
    • 2011
  • Processing a large area substrate for liquid crystal display (LCD) or solar panel applications in a capacitively coupled plasma (CCP) reactor is becoming increasingly challenging because of the size of the substrate size is no longer negligible compared to the wavelength of the applied radio frequency (RF) power. The situation is even worse when the driving frequency is increased to the Very High Frequency (VHF) range. When the substrate size is still smaller than 1/8 of the wavelength, one can obtain reasonably uniform process results by utilizing with methods such as tailoring the precursor gas distribution by adjustingthrough shower head hole distribution or hole size modification, locally adjusting the distance between the substrate and the electrode, and shaping shower head holes to modulate the hollow cathode effect modifying theand plasma density distribution by shaping shower head holes to adjust the follow cathode effect. At higher frequencies, such as 40 MHz for Gen 8.5 (2.2 m${\times}$2.6 m substrate), these methods are not effective, because the substrate is large enough that first node of the standing wave appears within the substrate. In such a case, the plasma discharge cannot be sustained at the node and results in an extremely non-uniform process. At Applied Materials, we have studied several methods of modifying the standing wave pattern to adjusting improve process non-uniformity for a Gen 8.5 size CCP reactor operating in the VHF range. First, we used magnetic materials (ferrite) to modify wave propagation. We placed ferrite blocks along two opposing edges of the powered electrode. This changes the boundary condition for electro-magnetic waves, and as a result, the standing wave pattern is significantly stretched towards the ferrite lined edges. In conjunction with a phase modulation technique, we have seen improvement in process uniformity. Another method involves feeding 40 MHz from four feed points near the four corners of the electrode. The phase between each feed points are dynamically adjusted to modify the resulting interference pattern, which in turn modulate the plasma distribution in time and affect the process uniformity. We achieved process uniformity of <20% with this method. A third method involves using two frequencies. In this case 40 MHz is used in a supplementary manner to improve the performance of 13 MHz process. Even at 13 MHz, the RF electric field falls off around the corners and edges on a Gen 8.5 substrate. Although, the conventional methods mentioned above improve the uniformity, they have limitations, and they cannot compensate especially as the applied power is increased, which causes the wavelength becomes shorter. 40 MHz is used to overcome such limitations. 13 MHz is applied at the center, and 40 MHz at the four corners. By modulating the interference between the signals from the four feed points, we found that 40 MHz power is preferentially channeled towards the edges and corners. We will discuss an innovative method of controlling 40 MHz to achieve this effect.

  • PDF

Fabrication and Analysis of Thin Film Supercapacitor using a Cobalt Oxide Thin Film Electrode (코발트 산화물 박막을 이용한 박막형 슈퍼 캐패시터의 제작 및 특성평가)

  • Kim, Han-Gi;Im, Jae-Hong;Jeon, Eun-Jeong;Seong, Tae-Yeon;Jo, Won-Il;Yun, Yeong-Su
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.339-344
    • /
    • 2001
  • An all solid-state thin film supercapacitor (TFSC) with Co$_3$O$_4$/LiPON/Co$_3$O$_4$ structure was fabricated on Pt/Ti/Si substrate using Co$_3$O$_4$ thin film electrode. Each Co$_3$O$_4$ film was grown by reactive dc reactive magnetron sputtering with increasing $O_2$/[Ar+O$_2$] ratio. Amorphous LiPON electrolyte film was deposited on Co$_3$O$_4$/Pt/Ti/Si in pure nitrogen ambient by using reactive rf magnetron sputtering. The electrochemical behavior of the Co$_3$O$_4$/LiPON/Co$_3$O$_4$ multi-layer structures exhibits a behavior of a bulk-type supercapacitor, even though much lower capacity (from 5 to 25 mF/$\textrm{cm}^2$-$\mu\textrm{m}$) than that of the bulk one. It was found that the TFSC showed a fairly constant discharge capacity with a constant current of 50 $\mu\textrm{A}/\textrm{cm}^2$ at the cut-off voltage 0-2V during 400 cycles. It is shown that the electrochemical behavior of the Co$_3$O$_4$/LiPON/Co$_3$O$_4$ TFSC is dependent upon the sputtering gas ratio. The capacity dependency of electrode films on different gas ratios was explained by different structural, electrical, and surfacical properties.

  • PDF

Characteristics of Copper Vanadium Oxide$(Cu_{0.5}V_2O_5)$ Cathode for Thin Film Microbattery (구리-바나듐 산화물 박막의 양극 특성 및 전 고상 전지의 제작)

  • Lim Y. C.;Nam S. C.;Park H. Y.;Yoon Y. S.;Cho W. I.;CHo B. W.;Chun H. S.;Yun K. S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.219-223
    • /
    • 2000
  • All-solid state lithium rechargeable thin film batteries were fabricated with the configuration of$Cu_{0.5}V_2O_5/Lipon/Li$ using sequential thin film techniques. Copper vanadium oxide thin films and Lipon thin films were prepared by DC reactive dual source magnetron sputtering and RF magnetron sputtering, respectively. According to XRD analysis, we found out that copper vanadium oxide thin films were amorphous. The electrochemical behaviour of them was examined in half cell system using EC : DMC(1:1 in IM $LiPF_5$) liquid electrolyte. The ionic conductivity of Lipon thin film was $1.02\times10^{-6}S/cm$ at $25^{\circ}C$ and $Cu_{0.5}V_2O_5/Lipon/Li$ cell showed that the discharge capacity was about $50{\mu}Ah/cm^2{\mu}m$ beyond 500cyc1es.

Real-time flood prediction applying random forest regression model in urban areas (랜덤포레스트 회귀모형을 적용한 도시지역에서의 실시간 침수 예측)

  • Kim, Hyun Il;Lee, Yeon Su;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1119-1130
    • /
    • 2021
  • Urban flooding caused by localized heavy rainfall with unstable climate is constantly occurring, but a system that can predict spatial flood information with weather forecast has not been prepared yet. The worst flood situation in urban area can be occurred with difficulties of structural measures such as river levees, discharge capacity of urban sewage, storage basin of storm water, and pump facilities. However, identifying in advance the spatial flood information can have a decisive effect on minimizing flood damage. Therefore, this study presents a methodology that can predict the urban flood map in real-time by using rainfall data of the Korea Meteorological Administration (KMA), the results of two-dimensional flood analysis and random forest (RF) regression model. The Ujeong district in Ulsan metropolitan city, which the flood is frequently occurred, was selected for the study area. The RF regression model predicted the flood map corresponding to the 50 mm, 80 mm, and 110 mm rainfall events with 6-hours duration. And, the predicted results showed 63%, 80%, and 67% goodness of fit compared to the results of two-dimensional flood analysis model. It is judged that the suggested results of this study can be utilized as basic data for evacuation and response to urban flooding that occurs suddenly.