• Title/Summary/Keyword: RF Thermal Plasma

Search Result 88, Processing Time 0.028 seconds

Numerical Analysis on RF (Radio-frequency) Thermal Plasma Synthesis of Nano-sized Ni Metal (고주파 열플라즈마 토치를 이용한 Ni 금속 입자의 나노화 공정에 대한 전산해석 연구)

  • Nam, Jun Seok;Hong, Bong-Guen;Seo, Jun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.401-409
    • /
    • 2013
  • Numerical analysis on RF (Radio-Frequency) thermal plasma treatment of micro-sized Ni metal was carried out to understand the synthesis mechanism of nano-sized Ni powder by RF thermal plasma. For this purpose, the behaviors of Ni metal particles injected into RF plasma torch were investigated according to their diameters ($1{\sim}100{\mu}m$), RF input power (6 ~ 12 kW) and the flow rates of carrier gases (2 and 5 slpm). From the numerical results, it is predicted firstly that the velocities of carrier gases need to be minimized because the strong injection of carrier gas can cool down the central column of RF thermal plasma significantly, which is used as a main path for RF thermal plasma treatment of micro-sized Ni metal. In addition, the residence time of the injected particles in the high temperature region of RF thermal plasma is found to be also reduced in proportion to the flow rate of the carrier gas In spite of these effects of carrier gas velocities, however, calculation results show that a Ni metal particle even with the diameter of $100{\mu}m$ can be completely evaporated at relatively low power level of 10 kW during its flight of RF thermal plasma torch (< 10 ms) due to the relatively low melting point and high thermal conductivity. Based on these observations, nano-sized Ni metal powders are expected to be produced efficiently by a simple treatment of micro-sized Ni metal using RF thermal plasmas.

APPLICATION OF RADIO-FREQUENCY (RF) THERMAL PLASMA TO FILM FORMATION

  • Terashima, Kazuo;Yoshida, Toyonobu
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.357-362
    • /
    • 1996
  • Several applications of radio-frequency (RF) thermal plasma to film formation are reviewed. Three types of injection plasma processing (IPP) technique are first introduced for the deposition of materials. Those are thermal plasma chemical vapor deposition (CVD), plasma flash evaporation, and plasma spraying. Radio-frequency (RF) plasma and hybrid (combination of RF and direct current(DC)) plasma are next introduced as promising thermal plasma sources in the IPP technique. Experimental data for three kinds of processing are demonstrated mainly based on our recent researches of depositions of functional materials, such as high temperature semiconductor SiC and diamond, ionic conductor $ZrO_2-Y_2O_3$ and high critical temperature superconductor $YBa_2Cu_3O_7-x$. Special emphasis is given to thermal plasma flash evaporation, in which nanometer-scaled clusters generated in plasma flame play important roles as nanometer-scaled clusters as deposition species. A novel epitaxial growth mechanism from the "hot" clusters namely "hot cluster epitaxy (HCE)" is proposed.)" is proposed.osed.

  • PDF

Surface modification of materials by thermal plasma (열플라즈마를 이용한 재료의 표면개질)

  • Kang, Seong-Pyo;Lee, Han Jun;Kim, Tae-Hee
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.6
    • /
    • pp.308-318
    • /
    • 2022
  • The surface modification and treatment using thermal plasma were reviewed in academic fields. In general, thermal plasma is generated by direct current (DC) and radiofrequency (RF) power sources. Thermal spray coating, a typical commercial process using thermal plasma, is performed by DC thermal plasma, whereas other promising surface modifications have been reported and developed using RF thermal plasma. Beyond the thermal spray coating, physical and chemical surface modifications were attempted widely. Superhydrophobic surface treatment has a very high industrial demand particularly. Besides, RF thermal plasma system for large-area film surface treatment is being developed. Thermal plasma is especially suitable for the surface modification of low-dimensional nanomaterial (e.g., nanotubes) by utilizing high temperature and rapid quenching. It is able to synthesize and modify nanomaterials simultaneously in a one-pot process.

NEW APPLICATIONS OF R.F. PLASMA TO MATERIALS PROCESSING

  • Akashi, Kazuo;Ito, Shigru
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.371-378
    • /
    • 1996
  • An RF inductively coupled plasma (ICP) torch has been developed as a typical thermal plasma generator and reactor. It has been applied to various materials processings such as plasma flash evaporation, thermal plasma CVD, plasma spraying, and plasma waste disposal. The RF ICP reactor has been generally operated under one atmospheric pressure. Lately the characteristics of low pressure RF ICP is attracting a great deal of attention in the field of plasma application. In our researches of RF plasma applications, low pressure RF ICP is mainly used. In many cases, the plasma generated by the ICP torch under low pressure seems to be rather capacitive, but high density ICP can be easily generated by our RF plasma torch with 3 turns coil and a suitable maching circuiit, using 13.56 MHz RF generator. Plasma surface modification (surface hardening by plasma nitriding and plasma carbo-nitriding), plasma synthesis of AIN, and plasma CVD of BN, B-C-N compound and diamond were practiced by using low pressure RF plasma, and the effects of negative and positive bias voltage impression to the substrate on surface modification and CVD were investigated in details. Only a part of the interesting results obtained is reported in this paper.

  • PDF

Synthesis of Silicon Carbide Nano-Powder from a Silicon-Organic Precursor by RF Inductive Thermal Plasma (RF 유도 열플라즈마를 이용한 유기 용매로 부터의 탄화규소 나노 분말 합성)

  • Ko, Sang-Min;Koo, Sang-Man;Kim, Jin-Ho;Cho, Woo-Seok;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.523-527
    • /
    • 2012
  • Silicon carbide (SiC) has recently drawn an enormous amount of industrial interest due to its useful mechanical properties, such as its thermal resistance, abrasion resistance and thermal conductivity at high temperatures. In this study, RF thermal plasma (PL-35 Induction Plasma, Tekna CO., Canada) was utilized for the synthesis of high-purity SiC powder from an organic precursor (hexamethyldisilazane, vinyltrimethoxysilane). It was found that the SiC powders obtained by the RF thermal plasma treatment included free carbon and amorphous silica ($SiO_2$). The SiC powders were further purified by a thermal treatment and a HF treatment, resulting in high-purity SiC nano-powder. The particle diameter of the synthesized SiC powder was less than 30 nm. Detailed properties of the microstructure, phase composition, and free carbon content were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), a thermogravimetric (TG) analysis, according to the and Brunauer-Emmett-Teller (BET) specific surface area from N2 isotherms at 77 K.

Plasma Engineering for Nano-Materials

  • Kim, Seong-In;Shin, Myoung-Sun;Son, Byung-Koo;Song, Seok-Kyun;Choi, Sun-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.79-79
    • /
    • 2012
  • A high temperature and a low temperature plasma process technologies were developed and demonstrated for synthesis, hybrid formation, surface treatment and CVD engineering of nano powder. RF thermal plasma is used for synthesis of spherical nano particles in a diameter ranged from 10 nm to 100 nm. A variety of nano particules such as Si, Ni, has been synthesized. The diameter of the nano-particles can be controlled by RF plasma power, pressure, gas flow rate and raw material feed rate. A modified RF thermal plasma also produces nano hybrid materials with graphene. Hemispherical nano-materials such as Ag, Ni, Si, SiO2, Al2O3, size ranged from 30 to 100 nm, has been grown on graphene nanoplatelet surface. The coverage ranged from 0.1 to 0.7 has been achieved uniformly over the graphene surface. Low temperature AC plasma is developed for surface modification of nano-powder. In order to have a three dimensional and lengthy plasma treatment, a spiral type of reactor has been developed. A similar plasma reactor has been modfied for nano plasma CVD process. The reactor can be heated with halogen lamp.

  • PDF

Synthesis of SiC Nano-powder from TEOS by RF Induction Thermal Plasma (RF 열플라즈마를 이용한 TEOS로 부터의 SiC 나노분말 합성)

  • Ko, Sang-Min;Koo, Sang-Man;Kim, Jin-Ho;Kim, Ji-Ho;Byeon, Myeong-Seob;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Silicon carbide (SiC) has recently drawn an enormous industrial interest because of its useful mechanical properties such as thermal resistance, abrasion resistance and thermal conductivity at high temperature. RF Thermal plasma (PL-35 Induction Plasma, Tekna CO., Canada) has been utilized for synthesis of high purity SiC powder from cheap inorganic solution (Tetraethyl Orthosilicate, TEOS). It is found that the powders by thermal plasma consist of SiC with free carbon and amorphous silica ($SiO_2$) and, by thermal treatment and HF treatment, the impurities are driven off resulting high purity SiC nano-powder. The synthesized SiC powder lies below 30 nm and its properties such microstructure, phase composition, specific surface area and free carbon content have been characterized by X-ay diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermogravimetric (TG) and Brunauer-Emmett-Teller (BET).

Higly pure graphene flake fabrication method by using RF thermal plasma (RF thermal plasma system 을 이용한 초고순도 그래핀 플레이크 제조에 관한 연구)

  • O, Jong-Sik;O, Ji-Su;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.13-13
    • /
    • 2014
  • 그래핀은 높은 열전도도, 이동도, 물리적 강도, 화학적 안정성을 갖는 물질로써 가장 활발하게 연구가 진행되고 있는 소재이다. 하지만, 높은 품질의 그래핀을 생산하기 위한 Chemical Vapor Deposition(CVD) 그래핀 제조 방법은 높은 공정단가와 낮은 수율 문제로 적용에 어려움을 겪고 있다. 본 연구에서는 초고순도 그래핀 플레이크를 RF thermal plasma를 이용하여 제조함으로써 이러한 문제점을 해결하고자 한다.

  • PDF

Development of 80 kW RF Thermal Plasma Torch System for Mass Production and Research of Si Nano-Powder Manufacturing Process (양산용 80 kW급 RF Plasma Torch System 개발 및 Si 나노분말 제조 공정 연구)

  • Song, Seok-Kyun;Son, Byungkoo;Kim, Byunghoon;Lee, Moonwon;Sin, Myungsun;Choi, Sunyong;Lee, Kyu-Hang;Kim, Seong-In
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.2
    • /
    • pp.66-78
    • /
    • 2013
  • In order to develop of 80 kW RF plasma torch system, we achieved three-dimensional simulations for the extraction of more information as temperature in torch and fluid behavior analysis, etc. The position of powder injection tube, the plasma discharge characteristics with various input current and various length of ceramic tube, and the plasma temperature characteristics with process gas flow rate such those was simulated. RF thermal plasma torch designed by simulation was manufactured that was measured to the maximum of 89.3 kW power. The mass production using developed 80 kW RF thermal plasma torch system were investigated by characteristics manufactured of Si nano powder. The mass-production level of Si nano-powder was average of 539 g/hr and high yield rate of 71.6%, respectively. The particle size distribution $D_{99}/D_{50}$ of manufacturing nano-powder was investigated to 1.98 as a good uniform.

Chonbuk National University 60kW and 200kw ICP(RF) Plasma systems for Advance Material processing (전북대학교 소재공정용 60kW 및 200kW ICP(RF) 플라즈마 발생 장치 구축 현황)

  • Lee, Mi-Yeon;Kim, Jeong-Soo;Seo, Jun-Ho;Choi, Seong-Man;Hong, Bong-Guen
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.781-783
    • /
    • 2010
  • Chonbuk national university High-enthalpy plasma research center is under construction for 60kW and 200kw ICP(RF) Plasma system as Advance Material R&D and production equipment. The 60kW & 200kW ICP(RF) plasma systems will contribute to promote Korea's material industrial development and Thermal plasma technology.

  • PDF