• Title/Summary/Keyword: RF Integrated Circuit

Search Result 152, Processing Time 0.024 seconds

High LO-RF Isolation W-band MIMIC Single-balanced Mixer (높은 LO-RF 격리 특성의 W-band MIMIC Single-balanced 믹서)

  • An Dan;Lee Bok-Hyung;Lim Byeong-Ok;Lee Mun-Kyo;Lee Sang-Jin;Jin Jin-Min;Go Du-Hyun;Kim Sung-Chan;Shin Dong-Hoon;Park Hyung-Moo;Park Hyim-Chang;Kim Sam-Dong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.6 s.336
    • /
    • pp.67-74
    • /
    • 2005
  • In this paper, high LO-RF isolation W-band MIMIC single-balanced mixer was designed and fabricated using a branch line coupler and a $\lambda$/4 transmission line. The simulation results of the designed 94 GHz balun show return loss of -27.9 dB, coupling of -4.26 dB, and thru of -3.77 dB at 94 GHz, respectively. The isolation and phase difference were 23.5 dB and $180.2^{\circ}$ at 94 GHz. The W-band MIMIC single-balanced mixer was designed using the 0.1 $\mu$m InGaAs/InAlAs/GaAs Metamorphic HEMT diode. The fabricated MHEMT was obtained the cut-off frequency(fT) of 189 GHz and the maximum oscillation frequency(fmax) of 334 GHz. The designed MIMIC single-balanced mixer was fabricated using 0.1 $\mu$m MHEMT MIMIC Process. From the measurement, the conversion loss of the single-balanced mixer was 23.1 dB at an LO power of 10 dBm. Pl dB(1 dB compression point) of input and output were 10 dBm and -13.9 dBm respectively. The LO-RF isolations of single-balanced mixer was obtained 45.5 dB at 94.19 GHz. We obtained in this study a higher LO-RF isolation compared to some other balanced mixers in millimeter-wave frequencies.

Influence of Co-sputtered HfO2-Si Gate Dielectric in IZO-based thin Film Transistors (HfO2-Si의 조성비에 따른 HfSiOx의 IZO 기반 산화물 반도체에 대한 연구)

  • Cho, Dong Kyu;Yi, Moonsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.98-103
    • /
    • 2013
  • In this work, we investigated the enhanced performance of IZO-based TFTs with $HfSiO_x$ gate insulators. Four types of $HfSiO_x$ gate insulators using different diposition powers were deposited by co-sputtering $HfO_2$ and Si target. To simplify the processing sequences, all of the layers composing of TFTs were deposited by rf-magnetron sputtering method using patterned shadow-masks without any intentional heating of substrate and subsequent thermal annealing. The four different $HfSiO_x$ structural properties were investigated x-ray diffraction(XRD), atomic force microscopy(AFM) and also analyzed the electrical characteristics. There were some noticeable differences depending on the composition of the $HfO_2$ and Si combination. The TFT based on $HfSiO_x$ gate insulator with $HfO_2$(100W)-Si(100W) showed the best results with a field effect mobility of 2.0[$cm^2/V{\cdot}s$], a threshold voltage of -0.5[V], an on/off ratio of 5.89E+05 and RMS of 0.26[nm]. This show that the composition of the $HfO_2$ and Si is an important factor in an $HfSiO_x$ insulator. In addition, the effective bonding of $HfO_2$ and Si reduced the defects in the insulator bulk and also improved the interface quality between the channel and the gate insulator.

An MMIC Doubly Balanced Resistive Mixer with a Compact IF Balun (소형 IF 발룬이 내장된 MMIC 이중 평형 저항성 혼합기)

  • Jeong, Jin-Cheol;Yom, In-Bok;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1350-1359
    • /
    • 2008
  • This paper presents a wideband doubly balanced resistive mixer fabricated using $0.5{\mu}m$ GaAs p-HEMT process. Three baluns are employed in the mixer. LO and RF baluns operating over an 8 to 20 GHz range were implemented with Marchand baluns. In order to reduce chip size, the Marchand baluns were realized by the meandering multicoupled line and inductor lines were inserted to compensate for the meandering effect. IF balun was implemented through a DC-coupled differential amplifier. The size of IF balun is $0.3{\times}0.5\;mm^2$ and the measured amplitude and phase unbalances were less than 1 dB and $5^{\circ}$, respectively from DC to 7 GHz. The mixer is $1.7{\times}1.8\;mm^2$ in size, has a conversion loss of 5 to 11 dB, and an output third order intercept(OIP3) of +10 to +15 dBm at 16 dBm LO power for the operating bandwidth.

Design and Fabrication of 100 GHz MIMIC Amplifier Using Metamorphic HEMT (Metamorphic HEMT를 이용한 100GHz MIMIC 증폭기의 설계 및 제작)

  • 안단;이복형;임병옥;이문교;백용현;채연식;박형무;이진구
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.25-30
    • /
    • 2004
  • In this Paper, the 0.1 w InGaAs/InAlAs/GaAs Metamorphic HEMT, which is applicable to MIMIC, and a 100 GHz MIMIC amplifier were designed and fabricated. The DC characteristics of MHEMT are 640 mA/mm of drain current density, 653 mS/mm of maximum transconductance. The current gain cut-off frequency(fT) is 173 GHz and the maximum oscillation frequency(fmax) is 271 GHz. A 100 GHz amplifier was designed using 0.1${\mu}{\textrm}{m}$ MHEMT and CPW technology. The measured results from the 100 GHz MIMIC amplifiers show good S21 gain of 10.1 dB and 12.74 dB at 100 GHz and 97.8 GHz, respectively.

A Simulation Study of a Chopping System for Extracting a Pulsed Beam from a Cyclotron

  • Kim, Jae-Hong;Hong, Seong-Gwang;Kim, Mi-Jeong;Kim, Seong-Jun;Kim, Myeong-Jin;Kim, Do-Gyun;Yun, Jong-Cheol;Kim, Jong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.537-537
    • /
    • 2013
  • Cyclotron-accelerated ion beams are used for various researches, such as nuclear physics, nuclear chemistry, biotechnology, and material sciences including radio-isotope production. Recently considerable applications are asked to the cyclotron development undertaken to meet user requirements of various ions'energies, intensities, and their pulsed beams. For instance, a cocktail beam acceleration technique rapidly changing the ion species and energies was developed to irradiating integrated circuit chips. Also a chopping system in a cyclotron injection line is considered for producing a pulsed ion beam with a relatively long period compared with that generated by the resonance frequency. For the research in neutron time-of-flight measurement, a single-pulsed beam with a repetition interval of the order of mili-seconds or longer is necessary to have a good resolution and to remove background events. In this paper a feasibility of pulsed beam with an external ion source is simulated by adopting a combination system of a chopper accompanying with a bunching stage in the injection line and an additional chopper after the exit of the cyclotron in order to produce beam pulses with a range of $1{\mu}s{\sim}1ms$ periods from a resonance RF cycle. The pulseperiod will be adjusted by chopping the number of beam bunches from the injected pulses in the injection line. However, the longer pulses will have reduced number of beam pulses and sacrificed beam currents. Because the beam users need an intense single pulsed beam, a careful tuning of the acceleration phase and a high-intense external ion source are necessary to achieve an intense single-pulsed beam from the cyclotron. It is essential to strictly match the acceleration phase of injected beams in the central region of the cyclotron to improve its efficiency. An effect of space charge at each pulse from the ion source will be also considered.

  • PDF

Hybrid complementary circuits based on organic/inorganic flexible thin film transistors with PVP/Al2O3 gate dielectrics

  • Kim, D.I.;Seol, Y.G.;Lee, N.E.;Woo, C.H.;Ahn, C.H.;Ch, H.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.479-479
    • /
    • 2011
  • Flexible inverters based on complementary thin-film transistor (CTFTs) are important because they have low power consumption and other advantages over single type TFT inverters. In addition, integrated CTFTs in flexible electronic circuits on low-cost, large area and mechanically flexible substrates have potentials in various applications such as radio-frequency identification tags (RFIDs), sensors, and backplanes for flexible displays. In this work, we introduce flexible complementary inverters using pentacene and amorphous indium gallium zinc oxide (IGZO) for the p-channel and n-channel, respectively. The CTFTs were fabricated on polyimide (PI) substrate. Firstly, a thin poly-4-vinyl phenol (PVP) layer was spin coated on PI substrate to make a smooth surface with rms surface roughness of 0.3 nm, which was required to grow high quality IGZO layers. Then, Ni gate electrode was deposited on the PVP layer by e-beam evaporator. 400-nm-thick PVP and 20-nm-thick ALD Al2O3 dielectric was deposited in sequence as a double gate dielectric layer for high flexibility and low leakage current. Then, IGZO and pentacene semiconductor layers were deposited by rf sputter and thermal evaporator, respectively, using shadow masks. Finally, Al and Au source/drain electrodes of 70 nm were respectively deposited on each semiconductor layer using shadow masks by thermal evaporator. Basic electrical characteristics of individual transistors and the whole CTFTs were measured by a semiconductor parameter analyzer (HP4145B, Agilent Technologies) at room temperature in the dark. Performance of those devices then was measured under static and dynamic mechanical deformation. Effects of cyclic bending were also examined. The voltage transfer characteristics (Vout- Vin) and voltage gain (-dVout/dVin) of flexible inverter circuit were analyzed and the effects of mechanical bending will be discussed in detail.

  • PDF

Design and Fabrication of 25 W Ka-Band SSPA Based on GaN HPA MMICs (GaN HPA MMIC 기반 Ka 대역 25 W SSPA 설계 및 제작)

  • Ji, Hong-gu;Noh, Youn-sub;Choi, Youn-ho;Kwak, Chang-soo;Youm, In-bok;Seo, In-jong;Park, Hyung-jin;Jo, In-ho;Nam, Byung-chang;Kong, Dong-uk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.12
    • /
    • pp.1083-1090
    • /
    • 2015
  • We designed and manufactured Ka-band SSPA include drive amplifier and high power amplifier MMICs by $0.15{\mu}m$ GaN commercial process. Also, we fabricated main components micro-strip line to WR28 waveguide transition and WR28 wave guide power combiner for Ka-band SSPA. This Ka-band SSPA shows saturated output power 44.2 dBm, power added efficiency 16.6 % and power gain 39.2 dB at 29~31 GHz frequency band.

V-band MIMIC Quadruple Subharmonic Mixer Using Cascode Harmonic Generator (Cascode 하모닉 발생기를 이용한 V-band MIMIC Quadruple Subharmonic 믹서)

  • An Dan;Lee Mun Kyo;Jin Jin Man;Go Du Hyun;Lee Sang Jin;Kim Sung Chan;Chae Yeon Sik;Park Hyung Moo;Shin Dong Hoon;Rhee Jin Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.5 s.335
    • /
    • pp.55-60
    • /
    • 2005
  • A V-band MIMIC quadruple subharmonic mixer is reported in this paper. The cascode harmonic generator is proposed for a high conversion gain. The proposed cascode harmonic generator is shown with a 4-th harmonic output characteristic that represents an average of 2.9 dB and a maximum of 4 dB higher than the conventional multiplier. The measured result of the subharmonic mixer has a conversion gain of 3_4 dB which a good conversion gain at a LO power of 13 dBm. Isolations of LO-to-IF and LO-to-RF were obtained -53.6 dB and -46.2 dB, respectively. The conversion gain of the subharmonic mixer in this study has a higher conversion gain compared with some other reports in millimeter-wave range.

Low Conversion Loss 94 GHz MHEMT MIMIC Resistive Mixer (낮은 변환손실 특성의 94 GHz MHEMT MIMIC Resistive 믹서)

  • An Dan;Lee Bok-Hyung;Lim Byeong-Ok;Lee Mun-Kyo;Oh Jung-Hun;Baek Yong-Hyun;Kim Sung-Chan;Park Jung-Dong;Shin Dong-Hoon;Park Hyung-Moo;Park Hyun-Chang;Kim Sam-Dong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.5 s.335
    • /
    • pp.61-68
    • /
    • 2005
  • In this paper, low conversion loss 94 GHz MIMIC resistive mixer was designed and fabricated. The $0.1{\mu}m$ InGaAs/InAlAs/GaAs Metamorphic HEMT, which is applicable to MIMIC's, was fabricated. The DC characteristics of MHEMT are 665 mA/mm of drain current density, 691 mS/mm of maximum transconductance. The current gain cut-off frequency(fT) is 189 GHz and the maximum oscillation frequency(fmax) is 334 GHz. A 94 GHz resistive mixer was fabricated using $0.1{\mu}m$ MHEMT MIMIC process. From the measurement, the conversion loss of the 94 GHz resistive mixer was 8.2 dB at an LO power of 10 dBm. P1 dB(1 dB compression point) of input and output were 9 dBm and 0 dBm, respectively. LO-RF isolations of resistive mixer was obtained 15.6 dB at 94.03 GHz. We obtained in this study a lower conversion loss compared to some other resistive mixers in W-band frequencies.

DC ∼ 45 GHz CPW Wideband Distributed Amplifier Using MHEMT (MHEMT를 이용한 DC ∼ 45 GHz CPW 광대역 분산 증폭기 설계 및 제작)

  • Jin Jin-Man;Lee Bok-Hyung;Lim Byeong-Ok;An Dan;Lee Mun-Kyo;Lee Sang-Jin;Ko Du-Hyun;Beak Yong Hyun;Oh Jung-Hun;Chae Yeon-Sik;Park Hyung-Moo;Kim Sam-Dong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.7-12
    • /
    • 2004
  • In this paper, CPW wideband distributed amplifier was designed and fabricated using 0.1 $\mum$ InGaAs/InAlAs/GaAs Metamorphic HEMT(High Electron Mobility Transistor). The DC characteristics of MHEMT are 442 mA/mm of drain current density, 409 mS/mm of maximum transconductance. The current gain cut-off frequency(fT) is 140 GHz and the maximum oscillation frequency(fmax) is 447 GHz. The distributed amplifier was designed using 0.1 $\mum$ MHEMT and CPW technology. We designed the structure of CPW curve, tee and cross to analyze the discontinuity characteristics of the CPW line. The MIMIC circuit patterns were optimized electromagnetic field through momentum. The designed distributed amplifier was fabricated using our MIMIC standard process. The measured results show S21 gain of above 6 dB from DC to 45 GHz. Input reflection coefficient S11 of -10 dB, and output reflection coefficient S22 of -7 dB at 45 GHz, respectively. The chip size of the fabricated CPW distributed amplifier is 2.0 mm$\times$l.2 mm.