• Title/Summary/Keyword: RF통신

Search Result 1,529, Processing Time 0.03 seconds

Vulnerabilities and Attack Methods in Visible Light Communications Channel (가시광 통신 채널의 취약성 및 공격 방법)

  • Park, So-Hyun;Joo, Soyoung;Lee, Il-Gu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.469-471
    • /
    • 2021
  • As wireless communication technology advances to ensure high accuracy and safety at high speeds, research and development of Visible Light Communication (VLC) technology has been accelerated as an alternative to traditional radio frequency (RF) technology. As the radio spectrum of RF communication becomes more congested and demand for bandwidth continues to increase, VLCs that can use unlicensed frequency band are proposed as a solution. However, VLC channels have broadcasting characteristics that make them easily exposed to eavesdropping and jamming attacks, and are vulnerable to MITM (Man-In-The-Middle) due to their line of sight (LOS) propagation characteristics. These attacks on VLC channels compromise the confidentiality, integrity, and availability of communications links and data, resulting in higher data retransmission rates, reducing throughput and increasing power consumption, resulting in lower data transmission efficiency. In this work, we model vulnerable VLC channels to analyze the impact of attacks and communications vulnerabilities by malicious jammers.

  • PDF

A Fundamental Study on the Receiver Front-End of Satellite Communication (MMIC를 위한 위성통신 수신 전단부의 기초 연구)

  • Chin, Youn-Kang;Yoon, Hyun-Bo;Kang, Hee-Chang;Park, Yhl;Cho, Gwang-Rae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.4
    • /
    • pp.277-284
    • /
    • 1988
  • A 12GHz low-noise amplifier, a single gate GaAs MESFET mixer, and a low-pass filter have been fabricated for DBS receiver applications by using MIC technology. Each subsystem contains DC block with symmetric line and ship capacitor, respectively. The frequency converter with chip capacitor exhibits a 20-23 dB conversin gain with a RF bandwidth of 11.581-11.981 GHz and an IF bandwidth of 581-981MHz. Rf bandwidth of 12.1GHz and an IF banewidth of 1GHz.

  • PDF

A Metasurface Improving the Fixed Function of a Ready-Made mm-Wave Antenna Module (밀리미터파 안테나 모듈 기성품의 고착화된 기능을 향상시키는 메타 재질 표면)

  • Jaewon Koh;Seongbu Seo;Yejune Seo;Sungtek Kahng
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.225-231
    • /
    • 2024
  • In this article, a new approach is presented to improve the unchangeable function of a ready-made millimeter-wave antenna system. By designing a metamaterial surface appropriate for the given geometry and fixed electrical characteristics of the device, the properties of the radiated fields of the RF product are changed to have directivity and higher antenna gain. Unlike other designs using periodic metamaterials for a single patch, an aperiodic metasurface is developed to handle two patches. For a higher received signal strength and a longer RF path in the 24 GHz-radio link, an aperiodic metasurface enhances the radiated fields by 10 dB.

Design of the Rain Sensor using a Coaxial Cavity Resonator (동축 공동 공진기를 이용한 물방울 감지 센서 설계에 관한 연구)

  • Lee, Yun-Min;Kim, Jin-Kook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.223-228
    • /
    • 2018
  • In this paper the water sensor using a coaxial cavity resonator is designed and manufactured. The water sensor which can sense water drop linearly has been constructed with voltage controlled oscillator(VCO), coaxial cavity resonator, RF switch, RF detector, A/D converter, DAC and micro controller. The operating frequency range of the designed water sensor is from 2.5GHz to 3.2GHz and the input voltage and current source are 24[V/DC] and 1[A]. The designed sensor circuit includes VCO, RF switch, RF detector which varies the frequency characteristics of the devices in the high frequency of 3GHz. And so we should correct the error of the frequency characteristics of those devices in the sensor circuit. To do this, we make the reference path which switches the signals to the RF detector directly without sending it to the resonator. According to the result of simulation and measurement, we can see that there is 0-50MHz difference between simulated resonator frequency and manufactured resonator frequency.

Design and Implementation of RF Module Part for Radar Detector (레이더 탐지기용 RF 모듈단 설계 및 구현)

  • Roh, Hee-Chang;Park, Wook-Ki;Jo, Yun-Hyun;Oh, Taeck-Keun;Park, Hyo-Dal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.519-527
    • /
    • 2010
  • In this paper, we design and implement a broadband LNA(Low Noise Amplifier), a mixer, and oscillators in RF module part for radar detector. For resolving the limitation of the conventional product that the sensitivity is low due to the poor gain flatness, we propose the architecture of RF module part. The proposed RF module part is composed with a broadband 2-stage LNA, a mixer, and three oscillators, and improves the maximum gain and gain flatness for detecting various frequencies. The overall performances of RF module part are above 38 dB conversion gain in whole band and 1 dB gain flatness. These results show that the maximum gain which is the problem of the conventional product is improved 6 dB from 35 dB to 41 dB, and gain flatness is also improved 17 dB from 22 dB to 5 dB.

Multi-Band RF Energy Harvesting System Using Buck-Boost DC-DC Converter (Buck-Boost DC-DC Converter를 이용한 다중 대역 RF 에너지 수집 시스템)

  • Cho, Choon Sik
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.89-93
    • /
    • 2017
  • This paper introduces an energy harvesting system that generates energy by collecting multi-band RF signals using buck-boost DC-DC converter. In an environment where the resistance of load using the collected electric energy is constantly changing, a buck-boost DC-DC converter is used in which the input resistance of the DC-DC converter does not change even if the load resistance changes. Since the frequency band of the input RF signal varies, the rectifier is designed for each band so that multiple bands can be processed, and a matching circuit is added to each band in front of the rectifier. For a rectifier to collect very small RF signals, a circuit is designed so that a constant voltage is obtained according to a very small input signal by devising a method of continuously accumulating the voltages collected and generated in each band. It is confirmed that the output efficiency can reach up to 20% even for the RF signal having the input of -20 dBm.

New On-Chip RF BIST(Built-In Self Test) Scheme and Circuit Design for Defect Detection of RF Front End (RF Front End의 결함 검출을 위한 새로운 온 칩 RF BIST 구조 및 회로 설계)

  • 류지열;노석호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.449-455
    • /
    • 2004
  • This paper presents a novel defect detection method for one chip RF front end with fault detection circuits using input matching measurement. We present a BIST circuit using 40.25{\mu}m$ CMOS technology. We monitor the input transient voltage of the RF front end to differentiate faulty and fault-free RF front end. Catastrophic as well as parametric variation fault models are used to simulate the faulty response of the RF front end. This technique has several advantages with respect to the standard approach based on current test stimulus and frequency domain measurement. Because DUT and fault detection circuits are implemented in the same chip, this test technique only requires use of digital voltmeter (RMS meter) and RF voltage source generator for simpleand inexpensive testing.

Design and Fabrication of RF evaluation board for 900MHz (900MHz대역 수신기용 RF 특성평가보드의 설계 및 제작)

  • 이규복;박현식
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.3
    • /
    • pp.1-7
    • /
    • 1999
  • A single RF transceiver evaluation board have been developed for the purpose of application to the 900MHz band transceiver contained RF-IC chip And environment test was evaluated. The RF-IC chipset includes LNA(Low Noise Amplifier), down-conversion mixer, AGC(Automatic Gain Controller), switched capacitor filter and down sampling mixer. The RF evaluation board for the testing of chipset contained various external matching circuits, filters such as RF/IF SAW(Surface Acoustic Wave) filter and duplexer and power supply circuits. With the range of 2.7~3.3V the operated chip revealed moderate power consumption of 42mA. The chip was well operated at the receiving frequency of 925~960MHz. Measurement result is similar to general RF receiving specification of the 900MHz digital mobile phone.

  • PDF