• 제목/요약/키워드: RESRAD-BUILD

검색결과 13건 처리시간 0.032초

해체사업의 최종현황조사를 위한 MARSSIM 적용 (Application of MARSSIM for Final Status Survey of the Decommissioning Project)

  • 홍상범;이기원;박진호;정운수
    • 방사성폐기물학회지
    • /
    • 제9권2호
    • /
    • pp.107-111
    • /
    • 2011
  • 해체의 최종단계는 대상 부지 및 건물을 규제로부터 제외하는 것이다. MARSSIM은 부지를 개방하기 위한 최종현황조사를 수행함에 있어 요구되는 자료의 수집 등의 다양한 요건을 만족키기 위한 총괄적인 지침을 제공한다. 연구로 해체 후 부지 및 건물의 최종현황조사를 위해 MARSSIM에서 제시하고 있는 방법을 적용하였다. 연구로 부지의 특성을 반영한 개방기준을 도출하기 위해 RESRAD 및 RESRAD-Build 전산코드를 이용하여 부지 및 건물에 대해서 계산하였다. 부지 및 건물의 조사설계(Survey Design)를 위해서 잠재적 오염도 및 측정 결과를 활용하여 조사구역을 구분하였고, 개략조사 및 특성조사를 통해 수집된 다양한 결과에 기초하여 통계학적 검사를 통해 조사구역 별로 요구되는 시료의 수를 산정하게 된다. 측정된 결과에 기초하여 연구로 최종 개방기준에 만족하는 것으로 평가되었다.

Using RESRAD-BUILD for Potential Radiation Dose Estimation the Korea Research Reactor-1 When It Opens to the Public as a Memorial Hall

  • Lee, Sangbok;Yoon, Yongsu;Kim, Sungchul
    • International Journal of Contents
    • /
    • 제16권2호
    • /
    • pp.102-108
    • /
    • 2020
  • The purpose of this study was to estimate and analyze the potential radiation dose that the future visitors and the cleaning staff will be exposed to when the KRR-1 reactor is converted into a memorial hall. The radiation doses were estimated using the RESRAD-BUILD software, where case, building, receptor, shielding, and source parameters were applied as the input data. Also, the basic data for the assessment of the radiation doses were determined in an indirect manner using the data on the waste generated during the decommissioning process of the reactor. The assessment results indicate that the potential radiation dose to the visitors and the cleaning staff will be less than 1 mSv, the annual dose limit for the general public. However, if anyone for a significant period of time is close to the reactor, the overall dose will increase. The radiation dose for the future visitors and the cleaning staff was determined to be lower than the annual dose limit for the general public. Given such a risk, systematic measures, such as periodic monitoring or limiting hours, are imperative.

Derivation of preliminary derived concentration guideline level (DCGL) by reuse scenario for Kori Unit 1 using RESRAD-BUILD

  • Park, Sang June;Byon, Jihyang;Ban, Doo Hyun;Lee, Suhee;Sohn, Wook;Ahn, Seokyoung
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1231-1242
    • /
    • 2020
  • The Kori Unit 1 will be decommissioned after a permanent shutdown in June 2017. South Korea has a 0.1 mSv/yr exposure limit standard for limited or unlimited site release. This is South Korea's first commercial NPP; therefore, if the containment building is reused as a memorial hall, it will contribute to the improvement of public understanding and enhance the public's acceptance of NPPs. Also, existing Kori Unit 1 nuclear power plant manpower resources can be reused after decommissioning and resident staff and memorial hall visitors can activate nearby commercial areas. Therefore, such a reuse scenario may also prevent an economic recession. The exposure dose was calculated using the following scenarios: worker in the containment building, visitor in the containment building, and worker in buildings other than the containment building. The exposure dose in the buildings was calculated by the RESRAD-BUILD developed by the Argonne National Laboratory (ANL). The preliminary exposure dose and derived concentration guideline level (DCGL) were derived.

Radionuclide-Specific Exposure Pathway Analysis of Kori Unit 1 Containment Building Surface

  • Byon, Jihyang;Park, Sangjune;Ahn, Seokyoung
    • 방사성폐기물학회지
    • /
    • 제18권3호
    • /
    • pp.347-354
    • /
    • 2020
  • Site characterization for decommissioning Kori Unit 1 is ongoing in South Korea after 40 years of successful operation. Kori Unit 1's containment building is assumed to be mostly radioactively contaminated, and therefore radiation exposure management and detailed contamination investigation are required for decommissioning and dismantling it safely. In this study, site-specific Derived Concentration Guideline Levels (DCGLs) were derived using the residual radioactivity risk evaluation tool, RESRAD-BUILD code. A conceptual model of containment building for Kori Unit 1 was set up and limited occupational worker building inspection scenario was applied. Depending on the source location, the maximum contribution source and exposure pathway of each radionuclide were analyzed. The contribution of radionuclides to dose and exposure pathways, by source location, is expected to serve as basic data in the assessment criteria of survey areas and classification of impact areas during further decommissioning and decontamination of sites.

External exposure specific analysis for radiation worker in reuse of containment building for Kori Unit 1

  • Byon, Jihyang;Park, Sangjune;Kim, Yangjin;Ahn, Seokyoung
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1781-1788
    • /
    • 2022
  • The containment building Kori Unit 1 may require sequential steps for full decommissioning. This study assumes that the containment building is to be used as an auxiliary building that handles nuclear power systems and materials during decommissioning before conversion into a greenfield. Through the derivation of guidelines and dose evaluation, it was confirmed whether the radiation workers were satisfied with the ALARA decision. The specific modeling of the external radiation exposure was performed based on the facility investigation procedures. The external radiation specific derived concentration guideline levels (DCGLs) for radiation workers in containment building were obtained using the RESRAD-BUILD code and were applied to the VISIPLAN 3D ALARA Planning Tool code to calculate the working dose and check worker safety. The derivation of site-specific and realistic DCGLs and dose evaluation via 3D modeling can contribute to the scenario development for the decommission and remediation of containment building.

A study on DCGL determination and the classification of contaminated areas for preliminary decommission planning of KEPCO-NF nuclear fuel fabrication facility

  • Cho, Seo-Yeon;Kim, Yong-Soo;Park, Da-Won;Park, Chan-Jun
    • Nuclear Engineering and Technology
    • /
    • 제51권8호
    • /
    • pp.1951-1956
    • /
    • 2019
  • As a part of the preliminary decommissioning plan of KEPCO-NF fuel fabrication facility, DCGLs of three target radionuclides, 234U, 235U, and 238U, were derived using RESRAD-BUILD code and contaminated areas of the facility were classified based on contamination levels from the derived DCGLs. From code simulations, one-room modeling results showed that the grinding room in building #2 was the most restrictive (DCGLgross = 10493.01 Bq/㎡). The DCGLgross results in contaminated areas from one-room modeling were slightly more conservative than three-room modeling. Prior to the code simulation, field survey and measurements conducted by each survey unit. For a conservative approach, the most restrictive DCGLgross in each survey unit was taken as a reference to classify the contaminated areas of the facility. Accordingly, seven rooms and 37 rooms in the nuclear-fuel buildings were classified as Class 1 and Class 2, respectively. As expected, fuel material handling and processing rooms such as the grinding room, sintering room, compressing room, and powder collecting room were included in the Class 1 area.