2011년도 춘계학술발표회 논문요약집 대한방사선방어학회

우라늄변환시설의 해체 완료 후 개방기준 도출

홍 상 범 · 황 두 성 · 이 기 원 · 문 제 권

한국원자력연구원 제염해체기술개발부 E-mail: sbhong@kaeri.re.kr

중심어: 우라늄변환시설, 유도농도지침한계, RESRAD, RESRAD-Build

서 론

우라늄변환시설은 중수로용 핵연료인 이산화우라늄 (UO₂) 분말을 생산하기 위한 시설로 핵연료 국산화를 성공적으로 수행하여 한국전력공사로 관련 기술을 전 수하고. 2001년부터 제염해체를 통한 환경복원사업을 시작하였다. 사업의 최종목표는 시설 및 부지내 방사 성물질을 제거하고 무제한적 사용이 가능한 수준으로 만드는 것이다. 해체사업의 종료되면 시설 및 부지에 대한 적절한 개방기준(Release Criteria) 수립을 위해 향후 용도를 결정하고 그에 따른 기준 설정을 위한 평가가 이루어져야 한다. 그러나 국내의 경우 원자력 시설의 해체 후 부지개방을 위한 기준 및 지침이 아 직 정비되지 않아서 관련기술의 개발을 통한 기준정 립이 절실히 요구된다. 본 연구는 우라늄변환시설의 부지 및 건물의 개방기준(유도농도지침한계)을 도출하 기 위해 RESRAD 및 RESRAD-Build 전산코드를 이용하였다. 그리고 우라늄변환시설의 최종현황조사를 조사과정에서 개방기준을 초과할 우려가 있는 지역 (Class 1)에 대한 조사설계(Survey Design)에 필요한 Area Factor를 계산하였다. 이는 향후 원자력시설 해 체 후 부지 및 건물의 개방을 위한 기준설정의 기초 자료로 활용될 것으로 기대된다.

재료 및 방법

원자력시설 해체의 최종단계로 부지 내에 잔류되어

있는 모든 방사성물질에 의한 오염을 조사 및 제거하 여 최종적으로 해체가 완료된 부지를 그 목적에 맞게 재활용할 수 있도록 하는 것이다. 이를 위해 건물 및 부지의 개방기준(Release Criteria)을 수립하고, 잔류 방사능 평가를 위한 측정조건을 계획 · 수행을 통해 얻어진 결과를 바탕으로 잔류 방사성물질을 제거하기 위한 복원활동(Remedial Action)의 수행 여부를 판단 하여, 최종적으로 조사설계를 근거로 조사된 결과가 개방기준을 만족하는지 평가를 통해 부지 및 건물을 개방하는 일련의 절차가 필요하다. 국내의 경우 해체 후 해제기준이 아직 수립되어 정립되어 있지 않다. IAEA는 부지의 무제한적 재사용을 위한 최적화 구간 으로 10 μSv/y ~ 300 μSv/y 를 제시하고 있고, US NRC의 경우 부지의 무제한적 재사용을 위한 기준으 로 250 μSv/y와 ALARA를 제시하고 있고, US EPA 의 경우 150 uSv/v와 ALARA를 제시하고 있다. 본 연구에서는 우라늄변환시설 해체작업 완료 후 시설 및 부지의 방사선학적 상태를 무제한적 사용을 위해 위하여 국내외의 부지 개방기준을 고려하여 유효선량 기준 100 μSv/y 설정하였고, 핵종별 유도농도지침한 계(DCGL, Derived Concentration Guideline Level) 을 국내의 부지특성을 반영하여 RESRAD 및 RESRED-Build 전산코드를 이용하여 도출하였다.

우라늅변환시설은 천연우라늄을 취급했던 시설로 우라늄동위원소에 대한 방사사능 분율이 ²³⁴U(49.6%), ²³⁵U(2.2%) 및 ²³⁸U(48.2%)로 결정되어 있어 이를 근 거로 평가하였다. 평가에 적용된 Library는 ICRP 72(Adult)를 적용하였고, 부지는 RESRAD(Ver 6.5) 를 적용하였고 건물은 RESRAD-Build(Ver 3.4)를 적 용하였다.

Table 1. The main imput parameters of RESRAD and RESRAD-Build codes

Parameters	Site (RESRAD)	Parameters	Building (RESRAD-Build)
In/Outdoor	0.5/0.25	Indoor	0.228
fraction		fraction	
Inhalation	7400 m³/y	Breathing	18 m³/day
rate		rate	
Mass loading	0.00006	Resuspensi	5.0E-7 sec ⁻¹
	g/m³	on rate	
Shielding	0.27	depository	0.01 m/s
factor		velocity	
Thickness of	0.3 m	Ingestion	0.0001 m²/h
con. zone		rate	
Cont. erosion	0.01 m/y	Number of	6
rate		source	(all surface)
Depth of	0.9 m	Source	Area
roots		geometry	(rectangular)
Consumption			
Fruit etc	254.8 kg/y		
Leafy	100 kg/y	Air release	0.1
Milk	63 L.y		
Meat	55.1 Kg/y	fraction	
Fish	79.3 Kg/y		
Water	196.3 L/yr		
wind speed	1.7 m/s	Removal	0.5
		fraction	0.0
Precipitation	1.354 m/y	Life time	365 day
rate			

결과 및 고찰

우라늄변환시설 부지의 무제한적 재활용을 위한 피폭 시나리오는 보수적으로 거주 경작 시나리오 (Residential Farming Scenario)를 적용하여 평가한 결과 유도농도지침한계는 10.01 Bq/g 으로 도출되었다. 건물의 경우 거주시나리오에 대한 평가한 결과 440.5 dpm/100cm 으로 도출되었다.

최종현황조사를 위해서는 부지 및 건물에 대한 조 사설계가 이루어져야 하고, 잔류오염도가 유도농도지 침한계를 초과할 우려가 있는 지역에 대하서는 Hot-spot을 고려한 추가조사가 필요한지 판단하기 위해 동적조사(Scan Survey)의 Required Scan MDC와 DCGL_{EMC}에 상응하는 Area factor를 도출하여야한다.

 $DCGL_{EMC} = DCGLw \times Area factor$

즉, 조사구역내의 측정지점간 거리를 줄여(조사지점 수를 증가) 좀 더 상세한 조사를 하기위해 MARSSIM(Multi-Agency Radiation and Site Investigation Manual)에서는 제시하고 있는 방법을 적용하였다. 이를 위해 부지 및 건물에 대한 Area Factor를 아래의 그림과 같이 추가적으로 도출하였다.

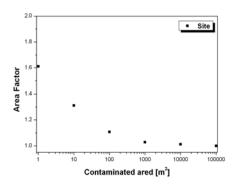


Fig. 1. Area factor of the site

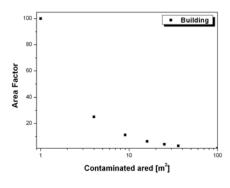


Fig. 1. Area factor of the building

우라늄변환시설의 부지 및 건물의 무제한적 재활용을 위해 핵종별 유도농도지침한계(DCGL) 및 Area Factor를 도출하였다. 이러한 결과는 향후 원자력시설 해체 후 부지의 재이용을 위한 기준을 마련하고, 수행하는 기초적이 자료가 될 것으로 판단된다.