• Title/Summary/Keyword: REGRESSION EQUATION

Search Result 2,154, Processing Time 0.034 seconds

Predictive analyses for balance and gait based on trunk performance using clinical scales in persons with stroke

  • Woo, Youngkeun
    • Physical Therapy Rehabilitation Science
    • /
    • v.7 no.1
    • /
    • pp.29-34
    • /
    • 2018
  • Objective: This study aimed to predict balance and gait abilities with the Trunk Impairment scales (TIS) in persons with stroke. Design: Cross-sectional study. Methods: Sixty-eight participants with stoke were assessed with the TIS, Berg Balance scale (BBS), and Functional Gait Assessment (FGA) by a therapist. To describe of general characteristics, we used descriptive and frequency analyses, and the TIS was used as a predictive variable to determine the BBS. In the simple regression analysis, the TIS was used as a predictive variable for the BBS and FGA, and the TIS and BBS were used as predictive variables to determine the FGA in multiple regression analysis. Results: In the group with a BBS score of >45 for regression equation for predicting BBS score using TIS score, the coefficient of determination ($R^2$) was 0.234, and the $R^2$ was 0.500 in the group with a BBS score of ${\leq}45$. In the group with an FGA score >15 for regression equation for predicting FGA score using TIS score, the $R^2$ was 0.193, and regression equation for predicting FGA score using TIS score, the $R^2$ was 0.181 in the group of FGA score ${\leq}15$. In the group of FGA score >15 for regression equation for predicting FGA score using TIS and BBS score, the $R^2$ was 0.327. In the group of FGA score ${\leq}15$ for regression equation for predicting FGA score using TIS and BBS score, the $R^2$ was 0.316. Conclusions: The TIS scores are insufficient in predicting the FGA and BBS scores in those with higher balance ability, and the BBS and TIS could be used for predicting variables for FGA. However, TIS is a strong predictive variable for persons with stroke who have poor balance ability.

A Generalized Calorie Estimation Algorithm Using 3-Axis Accelerometer

  • Choi, Jee-Hyun;Lee, Jeong-Whan;Shin, Kun-Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.301-309
    • /
    • 2006
  • The main purpose of this study is to derive a regression equation that predicts the individual differences in activity energy expenditure (AEE) using accelerometer during different types of activity. Two subject groups were recruited separately in time: One is a homogeneous group of 94 healthy young adults with age ranged from $20\sim35$ yrs. The other subject group has a broad spectrum of physical characteristics in terms of age and fat ratio. 226 adolescents and adults of age ranged from $12\sim57$ yrs and fat ratio from $4.1\sim39.7%$ were in the second group. The wireless 3-axis accelerometers were developed and carefully fixed at the waist belt level. Simultaneously the total calorie expenditure was measured by gas analyzer. Each subject performed walking and running at speeds of 1.5, 3.0, 4.5, 6.0, 6.5, 7.5, and 8.5 km/hr. A generalized sensor-independent regression equation for AEE was derived. The regression equation was developed fur walking and running. The regression coefficients were predicted as functions of physical factors-age, gender, height, and weight with multivariable regression analysis. The generalized calorie estimation equation predicts AEE with correlation coefficient of 0.96 and the average accuracy of the accumulated calorie was $89.6{\pm}7.9%$.

A Study on Prediction of Power Consumption Rate of Middle School Building in Changwon City by Regression Analysis (회귀분석을 통한 창원시 중학교 전력소비량 예측에 관한 연구)

  • Cho, Hyeong-Kyu;Park, Hyo-Seok;Choi, Jeong-Min;Cho, Sung-Woo
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.12 no.2
    • /
    • pp.61-70
    • /
    • 2013
  • As the existing school building power consumption is expressed by total power consumption, in the view of energy saving is disadvantage. The the power consumption of school building is divided as cooling, heating, lighting and others. The cooling power consumption, heating power consumption, lighting power consumption can be calculated using real total power consumption that gained from Korea Electric Power Corporation(KEPCO). The power consumption for cooling and heating can be calculated using heat transmittance, wall area and floor area, and for lighting is calculated by artificial lighting calculation. but this calculation methods is difficult for laymen. This study was carried out in order to establish the regression equation for cooling power consumption, heating power consumption, lighting power consumption and other power consumption in school building. In order to verify the validity of the regression equation, it is compared regression equation results and calculation results based on real power consumption. As the results, difference between regression result and calculation results for cooling and heating power consumption showed 0.6% and 3.6%.

Development of Multiple Regression Equation for Estimation of Suspended Solids in Unmeasurable Watershed (미계측 유역의 부유물질 산정을 위한 다중회귀식 개발)

  • Choi, Han-Kyu;Park, Jae-Yong;Park, Soo-Jin
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.119-127
    • /
    • 2006
  • The purpose of this study is to present quantitatively the influence of variables that had the largest effect on the changes in suspended solids(SS), which would cause turbid water phenomenon, among water quality factors of the non-point pollution source, and then to develop a multiple regression equation of SS and predict the water quality of ungaged watersheds so as to provide basic data to establish efficient management plans for SS which flow in rivers and lakes. To identify the correlation of SS with the amount of rainfall and the state of land use, a simple correlation analysis and a simple regression analysis were conducted respectively. Finally, a multiple regression analysis was conducted to provide that SS were set as dependent variables while the amount of rainfall, paddy fields and dry fields were set as independent variables. As a result, the amount of rainfall had the most significant influence on changes in SS, followed by dry fields and paddy fields. In addition, the multiple regression equation was developed to predict SS in unmeasurable watersheds.

  • PDF

The Conductance Determination of Total, Coliform and Psychrotrophic bacteria Counts in Raw Milk by Using Malthus (Malthus를 이용한 원유(原乳)내의 총균수, 대장균군수, 저온성균수 측정)

  • Nam, Eun-Sook;Chung, Choong-Il;Kang, Kook-Hee;Jeong, Dong-Kwan
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.764-769
    • /
    • 1994
  • This study was performed to obtain fast, consistant and reliable estimation system of bacterial counts of raw milk, which effectively related to the quality of sanitaion and the condition of production at the farm. This study compared regression equation and correlation coefficient relationship between standard plate counts and data of Malthus conductance method for the detection time of total, psychrotrophs, coliform bacterial counts in raw milk. Regression equation (RE) between conductance detection time (Y) and total bacterial log counts (X) was Y=18.27651 - 2.07550X, with correlation coefficient -0.95(n=201). In coliform, RE was Y=9.320848 - 1.15598X with correlation coefficient -0.90 (n=207). Psychrotrophs had the RE of Y=29.96008-3.02487 with correlation coeffecient -0.9 (n=201). This conductance method gave results more quickly and was less labor-intensive than traditional standard plate count method.

  • PDF

Statistical significance test of polynomial regression equation for Huff's quartile method of design rainfall (설계강우량의 Huff 4분위 방법 다항회귀식에 대한 유의성 검정)

  • Park, Jinhee;Lee, Jaejoon;Lee, Sungho
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.263-272
    • /
    • 2018
  • For the design of hydraulic structures, the design flood discharge corresponding to a specific frequency is generally used by using the design storm calculated according to the rainfall-runoff relationship. In the past, empirical equations such as rational equations were used to calculate the peak flow rate. However, as the duration of rainfall is prolonged, the outflow patterns are different from the actual events, so the accuracy of the temporal distribution of the probability rainfall becomes important. In the present work, Huff's quartile method is used for the temporal distribution of rainfall, and the third quartile is generally used. The regression equation for Huff's quadratic curve applies a sixth order polynomial equation because of its high accuracy throughout the duration of rainfall. However, in statistical modeling, the regression equation needs to be concise in accordance with the principle of simplicity, and it is necessary to determine the regression coefficient based on the statistical significance level. Therefore, in this study, the statistical significance test for regression equation for temporal distribution of the Huff's quartile method, which is used as the temporal distribution method of design rainfall, is conducted for 69 rainfall observation stations under the jurisdiction of the Korea Meteorological Administration. It is statistically significant that the regression equation of the Huff's quartile method can be considered only up to the 4th order polynomial equation, as the regression coefficient is significant in most of the 69 rainfall observation stations.

Development of Correction Equation and Characteristics Evaluation for Moisture Meter of Microwave Resistance Type (고주파 저항방식 함수율계의 보정식 개발 및 특성평가)

  • Jeon, Hong-Young;Kang, Tae-Hwann;Han, Chung-Su
    • Journal of Biosystems Engineering
    • /
    • v.35 no.3
    • /
    • pp.175-181
    • /
    • 2010
  • This study compared moisture content measured by moisture meter of microwave resistance type(MMMRT) and standard moisture content of paddy, and developed the correction equation using linear and curvilinear regression analysis, and to explore its significance test. The correction factor according to the range of moisture content was developed to improve the measurement precision of MMMRT. The results were as followings. The coefficients of determination of correction equation by linear and curvilinear regression analysis with comparing the MMMRT and standard moisture content were 0.946 and 0.968, respectively. The moisture content error of MMMRT and standard moisture content measured after the MMMRT were corrected by moisture content rate of every 5% using the correction equation by curvilinear regression analysis appeared with 0~0.5% and 0.9~1.8% respectively in the moisture content range of 15~20% and 20~25%.

Relationship between porcine carcass grades and estimated traits based on conventional and non-destructive inspection methods

  • Lim, Seok-Won;Hwang, Doyon;Kim, Sangwook;Kim, Jun-Mo
    • Journal of Animal Science and Technology
    • /
    • v.64 no.1
    • /
    • pp.155-165
    • /
    • 2022
  • As pork consumption increases, rapid and accurate determination of porcine carcass grades at abattoirs has become important. Non-destructive, automated inspection methods have improved slaughter efficiency in abattoirs. Furthermore, the development of a calibration equation suitable for non-destructive inspection of domestic pig breeds may lead to rapid determination of pig carcass and more objective pork grading judgement. In order to increase the efficiency of pig slaughter, the correct estimation of the automated-method that can accommodate the existing pig carcass judgement should be made. In this study, the previously developed calibration equation was verified to confirm whether the estimated traits accord with the actual measured traits of pig carcass. A total of 1,069,019 pigs, to which the developed calibration equation, was applied were used in the study and the optimal estimated regression equation for actual measured two traits (backfat thickness and hot carcass weight) was proposed using the estimated traits. The accuracy of backfat thickness and hot carcass weight traits in the estimated regression models through stepwise regression analysis was 0.840 (R2) and 0.980 (R2), respectively. By comparing the actually measured traits with the estimated traits, we proposed optimal estimated regression equation for the two measured traits, which we expect will be a cornerstone for the Korean porcine carcass grading system.

Surface Roughness Prediction of Interrupted Cutting in SM45C Using Coated Tool (초경피복공구를 이용한 기계구조용 탄소강의 단속절삭시 표면거칠기 예측)

  • Bae, Myung-Il;Rhie, Yi-Seon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.77-82
    • /
    • 2014
  • In this study, we carried out the interrupted cutting of carbon steel for a machine structure (SM45C) with a CVD-coated tool and conducted an ANOVA test and a confidence interval analysis to find factors influence the surface roughness and to obtain a regression equation. We found that factor which mostly affects the surface roughness during interrupted cutting was the feed rate. The cutting speed and depth of the cut only had small effect on the surface roughness. From the result of a multi-regression analysis during an interrupted cutting experiment, we obtained regression equation. Its coefficient of determination was 0.918, indicating that the regression equation was predictable. Compared to continuous cutting, if the feed rate increases, the surface roughness will also increase during interrupted cutting.

Design Optimization for Automotive Wheel Bearings Considering Life and Stiffness (수명과 강성을 고려한 자동차용 휠 베어링의 설계 최적화)

  • Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.94-101
    • /
    • 2023
  • Automotive wheel bearings are a critical component of vehicles that support their weight and facilitate rotation. Life and stiffness are significant performance characteristics of wheel bearings. Designing wheel bearings involves finding optimal design variables that satisfy both performances. CO2 emission reduction and fuel efficiency regulations attribute to the recent increase in design requirements for lightweight and compact automotive parts while maintaining performance. However, achieving a design that maintains performance while reducing weight poses challenges, as performance and weight are generally inversely proportional. In this study, we perform design optimization of automotive wheel bearings considering life and stiffness. We develop a program that calculates the basic rated life and modified rated life based on international standards for evaluating the life of wheel bearings. We develop a regression equation using regression analysis to address the time-consuming stiffness analysis during repetitive analysis. We perform ANOVA and main effect analyses to understand the statistical characteristics of the developed regression equation. Furthermore, we verify its reliability by comparing the predicted and test results. We perform design optimization using the developed life prediction program, stiffness regression equation and weight regression equation. We select bearing specifications and geometry as design variables, weight as the cost function, and life and stiffness as constraints. Through design optimization, we investigate the influence of design variables on the cost function and constraints by comparing the initial and optimal design values.