• Title/Summary/Keyword: RCP 8.5 scenario

Search Result 210, Processing Time 0.027 seconds

A Comparison Study of Runoff Projections for Yongdam Dam Watershed Using SWAT (SWAT모형을 이용한 용담댐 유역의 유량 전망 결과 비교 연구)

  • Jung, Cha Mi;Shin, Mun-Ju;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.6
    • /
    • pp.439-449
    • /
    • 2015
  • In this study, reliable future runoff projections based on RCPs for Yongdam dam watershed was performed using SWAT model, which was validated by k-fold cross validation method, and investigated the factors that cause the differences with respect to runoff projections between this study and previous studies. As a result, annual average runoff compared to baseline runoff would increase 17.7% and 26.1% in 2040s and 2080s respectively under RCP8.5 scenario, and 21.9% and 44.6% in 2040s and 2080s respectively under RCP4.5 scenario. Comparing the results to previous studies, minimum and maximum differences between runoff projections over different studies were 10.3% and 53.2%, even though runoff was projected by the same rainfall-runoff model. SWAT model has 27 parameters and physically based complex structure, so it tends to make different results by the model users' setting. In the future, it is necessary to reduce the cause of difference to generate standard runoff scenarios.

Analysis of Water Supply Probability for Agricultural Reservoirs Considering Non-irrigation Period Precipitation using RCP Scenarios (RCP 시나리오 기반 비관개기 강수량을 고려한 농업용 저수지의 용수공급 확률 분석)

  • Bang, Jehong;Choi, Jin-Yong;Lee, Sang-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.63-72
    • /
    • 2018
  • The main function of an agricultural reservoir is to supply irrigation water to paddy rice fields in South Korea. Therefore, the operation of a reservoir is significantly affected by the phenology of paddy rice. For example, the early stage of irrigation season, a lot of irrigation water is required for transplanting rice. Therefore, water storage in the reservoir before irrigation season can be a key factor for sustainable irrigation, and it becomes more important under climate change situation. In this study, we analyzed the climate change impacts on reservoir storage rate at the beginning of irrigation period and simulated the reservoir storage, runoff, and irrigation water requirement under RCP scenarios. Frequency analysis was conducted with simulation results to analyze water supply probabilities of reservoirs. Water supply probability was lower in RCP 8.5 scenario than in RCP 4.5 scenario because of low precipitation in the non-irrigation period. Study reservoirs are classified into 5 groups by water supply probability. Reservoirs in group 5 showed more than 85 percentage probabilities to be filled up from half-filled condition during the non-irrigation period, whereas group 1 showed less than 5 percentages. In conclusion, reservoir capacity to catchment area ratio mainly affected water supply probability. If the ratio was high, reservoirs tended to have a low possibility to supply enough irrigation water amount.

A Study on the Establishment of Quantitative Standards of Landslides Vulnerability by Climate Change (기후변화에 따른 산사태 취약성의 정량적 평가기준 설정 연구)

  • Lee, Dong-Kun;Kim, Hogul;Seo, Changwan;Song, Changkeun;Yu, Jeong Ah;Park, Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.2
    • /
    • pp.95-104
    • /
    • 2013
  • Average cumulative precipitation in summer have increased by 350 mm compared with 1980s. As precipitation is expected to increase, the risk of landslides by heavy rainfall also is expected to rise. Therefore, establishment of adaptation plan for landslides is urgently needed. In 2011, Korea Ministry of Environment(KME) conducted vulnerability assessment to support establishment of adaptation plan for local governments. However, the result of vulnerability assessment had three limitations. First, KME didn't use standard scenario of Korea Meteorological Administration(KMA). Second, They conducted same standardization method for all variables. Third, They derived relative vulnerability which is not quantitative. The purpose of this study is to improve the limitations of existing vulnerability assessment and identify quantitative criteria to ensure scientific reliability. To achieve this purpose, we carried out three ways of advancement. First, application of new climate scenario, which is RCP 8.5 from KMA. Second, improvement of variables of vulnerability assessment. Third, derivation of quantitative criteria of vulnerability. The findings can support establishment of adaptation plan for local governments more effectively.

Prediction of future hydrologic variables of Asia using RCP scenario and global hydrology model (RCP 시나리오 및 전지구 수문 모형을 활용한 아시아 미래 수문인자 예측)

  • Kim, Dawun;Kim, Daeun;Kang, Seok-koo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.551-563
    • /
    • 2016
  • According to the 4th and 5th assessment of the Intergovernmental Panel on Climate Change (IPCC), global climate has been rapidly changing because of the human activities since Industrial Revolution. The perceived changes were appeared strongly in temperature and concentration of carbon dioxide ($CO_2$). Global average temperature has increased about $0.74^{\circ}C$ over last 100 years (IPCC, 2007) and concentration of $CO_2$ is unprecedented in at least the last 800,000 years (IPCC, 2014). These phenomena influence precipitation, evapotranspiration and soil moisture which have an important role in hydrology, and that is the reason why there is a necessity to study climate change. In this study, Asia region was selected to simulate primary energy index from 1951 to 2100. To predict future climate change effect, Common Land Model (CLM) which is used for various fields across the world was employed. The forcing data was Representative Concentration Pathway (RCP) data which is the newest greenhouse gas emission scenario published in IPCC 5th assessment. Validation of net radiation ($R_n$), sensible heat flux (H), latent heat flux (LE) for historical period was performed with 5 flux tower site-data in the region of AsiaFlux and the monthly trends of simulation results were almost equaled to observation data. The simulation results for 2006-2100 showed almost stable net radiation, slightly decreasing sensible heat flux and quite increasing latent heat flux. Especially the uptrend for RCP 8.5 has been about doubled compared to RCP 4.5 and since late 2060s, variations of net radiation and sensible heat flux would be significantly risen becoming an extreme climate condition. In a follow-up study, a simulation for energy index and hydrological index under the detailed condition will be conducted with various scenario established from this study.

Streamflow response to climate change during the wet and dry seasons in South Korea under a CMIP5 climate model (CMIP5 기반 건기 및 우기 시 국내 하천유량의 변화전망 및 분석)

  • Ghafouri-Azar, Mona;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1091-1103
    • /
    • 2018
  • Having knowledge regarding to which region is prone to drought or flood is a crucial issue in water resources planning and management. This could be more challenging when the occurrence of these hazards affected by climate change. In this study the future streamflow during the wet season (July to September) and dry season (October to March) for the twenty first century of South Korea was investigated. This study used the statistics of precipitation, maximum and minimum temperature of one global climate model (i.e., INMCM4) with 2 RCPs (RCP4.5 and RCP8.5) scenarios as inputs for The Precipitation-Runoff Modelling System (PRMS) model. The PRMS model was tested for the historical periods (1966-2016) and then the parameters of model were used to project the future changes of 5 large River basins in Korea for three future periods (2025s, 2055s, and 2085s) compared to the reference period (1976-2005). Then, the different responses in climate and streamflow projection during these two seasons (wet and dry) was investigated. The results showed that under INMCM4 scenario, the occurrence of drought in dry season is projected to be stronger in 2025s than 2055s from decreasing -7.23% (-7.06%) in 2025s to -3.81% (-0.71%) in 2055s for RCP4.5 (RCP8.5). Regarding to the far future (2085s), for RCP 4.5 is projected to increase streamflow in the northern part, and decrease streamflow in the southern part (-3.24%), however under RCP8.5 almost all basins are vulnerable to drought, especially in the southern part (-16.51%). Also, during the wet season both increasing (Almost in northern and western part) and decreasing (almost in the southern part) in streamflow relative to the reference period are projected for all periods and RCPs under INMCM4 scenario.

A Study on Runoff and Pollutant Loading Prediction Using AR5 RCP4.5 Scenario in Nakdong River Watershed (AR5 RCP4.5 시나리오를 이용한 낙동강 유역에서의 유출 및 오염부하 전망)

  • Kim, Jung Min;Kim, Young Do;Kang, Busik;Park, Jin Hyeog
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.111-111
    • /
    • 2016
  • 최근 전 세계적으로 이상기후로 인해 극한 사상의 기후현상이 잦아지고 있으며 그로인한 피해가 확산되면서 관심이 높아지고 있다. 특히, 국내하천의 경우 높은 하상계수를 가지고 있는 만큼 수자원보전에 취약하고 수질의 문제 또한 대두되고 있다. 4대강 중 하나인 낙동강에는 8개의 보가 설치되었고 유역에 안동, 임하, 합천, 남강, 밀양댐 등 다기능댐이 있어 댐의 방류량이 낙동강의 유량에 큰 영향을 미치고 있다. 낙동강의 유량 및 수질을 관리하기 위해서는 이러한 현황들을 반영하여 유역관리를 포함한 통합적인 유량 및 수질관리가 필요하다. 본 연구에서는 IPCC에서 제공하는 AR5 RCP4.5 시나리오를 분위사상법(Quantile mapping)과 CF 다운스케일링 기법을 사용하여 유역에 맞게 상세화를 수행하였으며, 검 보정을 거친 SWAT 모형의 입력자료로 사용하여 낙동강 유역의 본류 및 지류의 미래 유출량 및 오염부하량을 예측하였다. 낙동강 유역에서의 미래기후변화 시나리오를 분석한 결과, 비홍수기에 32.3%, 홍수기에 31.1% 증가하는 것으로 나타났고, 2041 ~ 2070년도에 6%까지 증가하였다가 2071 ~ 2100년에 0.4% 감소하였다. 미래기후변화 시나리오를 SWAT 모형에 적용한 결과로는 주요 8개 지류에서 비슷한 패턴을 보였으며, 위천과 남강에서 각각 최대 45.5%, 16.6% 유출량이 증가하는 것으로 나타났다.

  • PDF

Projection of the Future Wave Climate Changes Over the Western North Pacific (기후변화에 따른 북서태평양에서의 미래 파랑 전망)

  • Park, Jong Suk;Kang, KiRyong;Kang, Hyun-Suk;Kim, Young-Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.267-275
    • /
    • 2013
  • This study projected the future ocean wave climate changes based on global climate change scenario using the coupled climate model HadGEM2-AO according to the emission scenarios and using regional wave model. Annual mean significant wave height (SWH) is linked closely to annual mean wind speed during the forthcoming 21st Century. Because annual mean speed decreased in the western North Pacific, annual mean SWH is projected to decrease in the future. The annual mean SWH decreases for the last 30 years of the 21st century relative to the period 1971-2000 are 2~7% for RCP4.5 and 4~11% for RCP8.5, respectively. Also, extreme SWH and wind speed are projected to decrease in the future. In terms of seasonal mean, winter extreme SWH shows similar trend with annual extreme SWH; however, that of summer shows large increasing tendency compared with current climate in the western North Pacific. Therefore, typhoon intensity in the future might be more severe in the future climate.

Habitat Climate Characteristics of Lauraceae Evergreen Broad-leaved Trees and Distribution Change according to Climate Change (녹나무과 상록활엽수 자생지 기후특성과 기후변화에 따른 분포 변화)

  • Yu, Seung-Bong;Kim, Byung-Do;Shin, Hyun-Tak;Kim, Sang-Jun
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.6
    • /
    • pp.503-514
    • /
    • 2020
  • Climate change leads to changes in phenological response and movement of plant habitats. Korea's evergreen broad-leaved forest has widened its distribution area compared for the past 20 years, and the range of its native habitats is moving northward. We analyzed climate indices such as the warmth index, the cold index, the lowest temperature in the coldest month, and the annual average temperature, which are closely related to vegetation distribution, to predict the change in the native habitat of Lauraceae evergreen broad-leaved trees. We also analyzed the change and spatial distribution to identify the habitat climate characteristics of 8 species of Lauraceae evergreen broad-leaved trees distributed in the warm temperate zone in Korea. Moreover, we predicted the natural habitat change in the 21st century according to the climate change scenario (RCP 4.5/8.5), applying the MaxEnt species distribution model. The monthly average climate index of the 8 species of Lauraceae evergreen broad-leaved trees was 116.9±10.8℃ for the temperate index, the cold index 3.9±3.8℃, 1495.7±455.4mm for the annual precipitation, 11.7±3.5 for the humidity index, 14.4±1.1℃ for the annual average temperature, and 1.0±2.1℃ for the lowest temperature of winter. Based on the climate change scenario RCP 4.5, the distribution of the Lauraceae evergreen broad-leaved trees was analyzed to expand to islands of Jeollanam-do and Gyeongsangnam-do, adjacent areas of the west and south coasts, and Goseong, Gangwon-do on the east coast. In the case of the distribution based on the climate change scenario RCP 8.5, it was analyzed that the distribution would expand to all of Jeollanam-do and Gyeongsangnam-do, and most regions except for some parts of Jeollabuk-do, Chungcheongnam-do, Gyeongsangbuk-do, and the capital region. For the conservation of Lauraceae evergreen broad-leaved trees to prepare for climate change, it is necessary to establish standards for conservation plans such as in-situ and ex-situ conservation and analyze various physical and chemical characteristics of native habitats. Moreover, it is necessary to preemptively detect changes such as distribution, migration, and decline of Lauraceae evergreen broad-leaved trees following climate change based on phenological response data based on climate indicators and establish conservation management plans.

Prediction of the Flight Times of Hydrochara affinis and Sternolophus rufipes in Paddy Fields Based on RCP 8.5 Scenario (RCP 8.5 기후변화 시나리오를 적용한 논 서식 애물땡땡이 (Sternolophus rufipes)와 잔물땡땡이(Hydrochara affinis)의 비행시기 예측)

  • Choi, Soon-Kun;Kim, Myung-Hyun;Choe, Lak-Jung;Eo, Jinu;Bang, Hea-Son
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.1
    • /
    • pp.16-29
    • /
    • 2016
  • The total area of paddy field was estimated to be 55 % of the cultivated lands in South Korea, which is approximately 1 million hectares. Organisms inhabiting paddy fields if they are sensitive to environmental changes can be environmental indicator of paddy fields. Biological indicators such as phenology and distributional range are evaluated as intuitive and quantitative method to analyze the impact of climate change. This study aims to estimate flight time change of Hydrophilidae species' based on the RCP 8.5 climate change scenario. Unmanned monitoring systems were installed in Haenam, Buan, Dangjin and Cheorwon relative to the latitudinal gradient. In the three regions excepting Cheorwon, it was able to measure the abundance of flying Hydrochara affinis and Sternolophus rufipes. Degree-day for the flight time was determined based either on field measurement values and estimates of 2020s, 2050s and 2080s from KMA climate change scenario data. As a result, it is found that date of both species of initial flight becomes 15 days earlier, that of peak flight becomes 22 days earlier and that of final flight does 27 days earlier in 2080s compared to 2020s. The climate change impact on flight time is greater in coastal area, rural area and valley than inland area, urban area and plan. H. affinis and S. rufipes can be used as climate change indicator species.

The Variation of Surface Runoff according to Climate Change Scenario (기후변화 시나리오에 따른 지표유출량 변화)

  • Son, Minwoo;Byun, Jisun;Park, Byeoungeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.356-356
    • /
    • 2018
  • 기후변화는 자연적 요인보다는 인간의 활동으로부터 기인하는 것으로 알려진다. 지구 온난화의 영향으로 우리나라의 평균 기온은 상승하고 있으며, 강수량 또한 증가추세에 있다. 이러한 미래 기온의 상승과 강수량의 변화는 나아가 수문 순환에 영향을 미치며, 수자원의 효과적인 이용을 위하여 기후변화에 따른 수문 순환 특성을 파악하는 것은 매우 중요하다. 이에 본 연구에서는 국제 수문 프로그램의 대상 유역 중 하나로 장기간의 강우-유출 자료가 구축되어있는 청미천 유역을 대상으로, 기후변화에 따른 지표 유출량 변화를 살펴본다. 기후변화를 전망하기 위한 방법으로 인간 활동이 대기에 미치는 복사량으로 온실 가스 농도를 정의하는 시나리오인 대표농도경로(Reperentative Concentration Pathway, RCP)를 적용하였다. 기상청에서 제공되는 여러 RCP 시나리오 중 기후변화가 현재의 추세를 쫓아 상승 형태를 나타내는 RCP 8.5 시나리오와 저감 정책이 어느 정도 실현되어 형태가 안정된 RCP 4.5 시나리오 두 개를 선정하였다. 기후변화 시나리오는 근본적으로 불확실성을 포함하기 때문에, 특정 기후변화를 가정하기 보다는 특성이 대비되는 두 개 시나리오를 적용하여 기후변화의 발달 정도에 따른 유출량 변화를 살펴보고자 한다. 장기간의 수문 순환 특성을 모의하기 위하여 준 분포형 장기유출 모형인 Soil and Water Assessment Tool(SWAT)을 이용하며, SWAT에서 요구되는 방대한 양의 매개변수들은 매개변수의 최적값 산정 프로그램인 SWAT Calibration and Uncerntianty Programs (SWAT-CUP)을 통해 얻는다. 과거의 강우-유출 자료로부터 구축된 SWAT 모형에 기후변화 시나리오를 적용함으로써 기후변화 시나리오에 따른 지표유출량 변화를 살펴볼 수 있다. 구축된 SWAT 모형을 이용하여 모의를 한 결과, 두 개 시나리오 모두에서 청미천 유역의 지표유출량이 증가하는 것으로 나타났으며 RCP 4.5 시나리오보다 RCP 8.5 시나리오에서 더 많은 유출이 발생할 것으로 전망된다. 유출량의 증가와 함께 총 부유사량 또한 증가 추세에 있으며, RCP 8.5 시나리오에서 더 많은 유출이 계산된다. 이러한 유출량의 증가는 강수량, 기온, 일사량, 풍속, 습도와 같은 기후 특성의 변화가 고려된 결과로 판단된다. 기후변화에 따른 총 유사량의 증가는 범용토양 유실공식에서 강우 에너지의 증가로 인해 유출량과 동일한 양상을 띠는 것으로 판단된다.

  • PDF