• Title/Summary/Keyword: RCP 8.5

Search Result 400, Processing Time 0.027 seconds

Evaluation on Climate Change Vulnerability of Korea National Parks (국립공원의 기후변화 취약성 평가)

  • Kim, Chong-Chun;Kim, Tae-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.1
    • /
    • pp.42-50
    • /
    • 2016
  • The purpose of this study is to set the direction to manage national parks to cope with climate change, and offer basic data to establish the relevant policies. Towards this end, this study analyzed the current and future climate change vulnerability of national parks using the 24 proxy variables of vulnerability in the LCCGIS program, a tool to evaluate climate change vulnerability developed by the National Institute of Environmental Research. To analyze and evaluate the current status of and future prospect on climate change vulnerability of national parks, the proxy variable value of climate exposure was calculated by making a GIS spatial thematic map with $1km{\times}1km$ grid unit through the application of climate change scenario (RCP8.5). The values of proxy variables of sensitivity and adaptation capability were calculated using the basic statistics of national parks. The values of three vulnerability evaluation items were calculated regarding the present (2010s) and future (2050s). The current values were applied to the future equally under the assumption that the current state of the proxy variables related to sensitivity and adaptation capability without a future prediction scenario continues. Seoraksan, Odaesan, Jirisan and Chiaksan National Parks are relatively bigger in terms of the current (2010s) climate exposure. The national park, where the variation of heat wave is the biggest is Wolchulsan National Park. The biggest variation of drought occurs to Gyeryongsan National Park, and Woraksan National Park has the biggest variation of heavy rain. Concerning the climate change sensitivity of national parks, Jirisan National Park is the most sensitive, and adaptation capability is evaluated to be the highest. Gayasan National Park's sensitivity is the lowest, and Chiaksan National Park is the lowest in adaptation capability. As for climate change vulnerability, Seoraksan, Odaesan, Chiaksan and Deogyusan National Parks and Hallyeohaesang National Park are evaluated as high at the current period. The national parks, where future vulnerability change is projected to be the biggest, are Jirisan, Woraksan, Chiaksan and Sobaeksan National Parks in the order. Because such items evaluating the climate change vulnerability of national parks as climate exposure, sensitivity and adaptation capability show relative differences according to national parks' local climate environment, it will be necessary to devise the adaptation measures reflecting the local climate environmental characteristics of national parks, rather than establishing uniform adaptation measures targeting all national parks. The results of this study that evaluated climate change vulnerability using climate exposure, sensitivity and adaptation capability targeting Korea's national parks are expected to be used as basic data for the establishment of measures to adapt to climate change in consideration of national parks' local climate environmental characteristics. However, this study analyzed using only the proxy variables presented by LCCGIS program under the situation that few studies on the evaluation of climate change vulnerability of national parks are found, and therefore this study may not reflect overall national parks' environment properly. A further study on setting weights together with an objective review on more proper proxy variables needs to be carried out in order to evaluate the climate change vulnerability of national parks.

Yield, Nitrogen Use Efficiency and N Uptake Response of Paddy Rice Under Elevated CO2 & Temperature (CO2 및 온도 상승 시 벼의 수량, 질소 이용 효율 및 질소 흡수 반응)

  • Hyeonsoo Jang;Wan-Gyu Sang;Youn-Ho Lee;Pyeong Shin;Jin-hee Ryu;Hee-woo Lee;Dae-wook Kim;Jong-tag Youn;Ji-Won Han
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.346-358
    • /
    • 2023
  • Due to the acceleration of climate change or global warming, it is important to predict rice productivity in the future and investigate physiological changes in rice plants. The research aimed to explore how rice adapts to climate change by examining the response of nitrogen absorption and nitrogen use efficiency in rice under elevated levels of carbon dioxide and temperature, utilizing the SPAR system for analysis. The temperature increased by +4.7 ℃ in comparison to the period from 2001 to 2010, while the carbon dioxide concentration was held steady at 800 ppm, aligning with South Korea's late 21st-century RCP8.5 scenario. Nitrogen was applied as fertilizer at rates of 0, 9, and 18 kg 10a-1, respectively. Under conditions of climate change, there was an 81% increase in the number of panicles compared to the present situation. However, grain weight decreased by 38% as a result of reduction in the grain filling rate. BNUE, indicative of the nitrogen use efficiency in plant biomass, exhibited a high value under climate change conditions. However, both NUEg and ANUE, associated with grain production, experienced a notable and significant decrease. In comparison to the current conditions, nitrogen uptake in leaves and stems increased by 100% and 151%, respectively. However, there was a 25% decrease in nitrogen uptake in the panicle. Likewise, the nitrogen content and NDFF (Nitrogen Derived from Fertilizer) in the sink organs, namely leaves and roots, were elevated in comparison to current levels. Therefore, it is imperative to ensure resources by mitigating the decrease in ripening rates under climate change conditions. Moreover, there seems to be a requirement for follow-up research to enhance the flow of photosynthetic products under climate change conditions.

Assessment of Design water level variation Due to Climate Change for Port Nam-Hyang, Ulleng-Do (기후변화 시나리오에 따른 울릉도 남양항의 설계수위 변화 평가)

  • Kwon, Kyong Hwan;Park, Jee Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.219-219
    • /
    • 2022
  • 지구 온난화와 함께 발생하는 해수면 상승은 한반도의 해안지역을 비롯하여 울릉도 등 도서지역 전반에 걸쳐 진행 중이다. 또한 해수면의 온도 상승으로 인한 열대저기압의 생성 시 에너지 공급이 증가하며 연안으로 내습하는 파랑 내습 에너지가 커지게 된다. 경상북도 울릉군에 위치한 남양항은 최근 2019년 태풍 다나스 및 2020년 태풍 마이삭 등에 의해 고파랑 혹은 침수 피해가 발생하여 항 내에서는 물양장과 선박이 파괴되고 방파제가 전도되는 등의 피해가 속출하였다. 동해안의 태풍 내습, 지구 온난화와 저기압 발달에 의한 수위 상승 등과 같은 다양한 해양기후를 고려한 연안 구조물의 파랑 영향을 검토하는 것이 중요할 것으로 판단되었다. 기상청 태풍센터에서 제공하는 1979년부터 2020년까지 한반도 해역에 내습한 태풍 중 울릉도에 영향을 미친 태풍은 18개로 울릉도 인근에 영향을 준 내습 태풍을 10년 단위로 분석해 보면, 1980년대 3개, 1990년대 2개, 2000년대 8개, 2010년대 3개, 2020년 2개로 2000년대에 울릉도 영향권에 들어간 태풍이 가장 많았으며, 심해파 추산 기간 이후 2020년 1년 동안 울릉도 인근으로 마이삭, 하이선과 같은 2개의 태풍이 연속적으로 영향을 주었다. 울릉도에 영향을 미친 18개 태풍을 대상으로 일본 기상청(JMA)에서 제공하는 1시간 바람장을 이용하여 파랑 후측 수치 모의를 수행하였으며, 해양수산부와 기상청 관측 부이를 이용하여 파랑에 대한 정확도를 확보하였다. 고파랑 내습 시 연안에 조우하는 수위 조건은 파랑 에너지의 증가를 결정하게 되며, 항만 구조물의 설계에 적용되고 있는 약최고고조위 이상(4대분조의 최대 조위)의 최극조위 조건에서 해안 구조물에 월파 및 침수 피해를 주는 요인으로 작용할 수 있다. 이를 바탕으로 울릉도 남양항에서 폭풍 시 내습한 최극고조위(0.65m)와 IPCC 5차 보고서에 제시한 최악의 시나리오(RCP 8.5) 조건에서 울릉도에서 확인된 0.79 cm 상승고를 반영하여 범람위험평가를 광역에서의 계산 결과를 입력자료로 하여 준 3차원 비 정수압 파랑 변형 수치 모형인 MIKE 3 Wave를 사용하여 실험하였다. 해수면 상승에 의한 수위 상승고는 연안 파랑 증가에 영향을 주었으며 연안 구조물의 침수 피해에 영향을 줄 것으로 판단되었다. 월파 차단, 파랑 차폐의 목적으로 건설되는 구조물의 규모 및 천단고 등을 설정하는데 설계 수위의 선정은 중요하다. 수치 실험 결과를 바탕으로 방파제 및 호안의 범람 위험 평가를 수행하고 구조물 설계 시 이러한 해수면 상승고가 반영된 설계가 중요하다는 것을 위험 평가를 통해 확인할 수 있다.

  • PDF

Constraints and opportunities to sustain future wheat yield and water productivity in semi-arid environment

  • Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.185-185
    • /
    • 2019
  • Sustaining future wheat production is challenged by anthropogenically forced climate warming and drying led by increased concentration of greenhouse gases all around the globe. Warming stresses, originating from the elevated $CO_2$ concentration, are continuously reported to have negative impacts on wheat growth and yield. Yet, elevated $CO_2$ concentration, despite being disparagingly blamed for promoting warming, is also associated with a phenomenon called $CO_2$ enrichment; in which wheat yield can improve due to the enhanced photosynthesis rates and less water loss through transpiration. The conflicting nature of climate warming and $CO_2$ enrichment and their interplay can have specific implications under different environments. It is established form the field and simulation studies that the two contrasting phenomena would act severely in their own respect under arid and semi-arid environments. Wheat is a dietary staple for masses in Pakistan. The country's wheat production system is under constant stress to produce more from irrigated agricultural lands, primarily lying under arid to semi-arid environments, to meet the rapidly growing domestic needs. This work comprehensively examines the warming impacts over wheat yield and water productivity (WP), with and without the inclusion of $CO_2$ enrichment, under semi-arid environment of Punjab which is the largest agricultural province of Pakistan. Future wheat yields and WPs were simulated by FAO developed AquaCrop model v 5.0. The model was run using the bias-correction climate change projections up to 2080 under two representative concentration pathways (RCP) scenarios: 4.5 and 8.5. Wheat yield and WPs decreased without considering the $CO_2$ enrichment effects owing to the elevated irrigation demands and accelerated evapotranspiration rates. The results suggested that $CO_2$ enrichment could help maintain the current yield and WPs levels during the 2030s (2021-2050); however, it might not withhold the negative climate warming impacts during the 2060s (2051-2080). Furthermore, 10 - 20 day backward shift in sowing dates could also help ease the constraints imposed by climate warming over wheat yields and WPs. Although, $CO_2$ enrichment showed promises to counteract the adverse climate warming impacts but the interactions between climate warming and $CO_2$ concentrations were quite uncertain and required further examination.

  • PDF

Suggestion and Evaluation for Prediction Method of Landslide Occurrence using SWAT Model and Climate Change Data: Case Study of Jungsan-ri Region in Mt. Jiri National Park (SWAT model과 기후변화 자료를 이용한 산사태 예측 기법 제안과 평가: 지리산 국립공원 중산리 일대 사례연구)

  • Kim, Jisu;Kim, Minseok;Cho, Youngchan;Oh, Hyunjoo;Lee, Choonoh
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.106-117
    • /
    • 2021
  • The purpose of this study is prediction of landslide occurrence reflecting the subsurface flow characteristics within the soil layer in the future due to climate change in a large scale watershed. To do this, we considered the infinite slope stability theory to evaluate the landslide occurrence with predicted soil moisture content by SWAT model based on monitored data (rainfall-soil moisture-discharge). The correlation between the SWAT model and the monitoring data was performed using the coefficient of determination (R2) and the model's efficiency index (Nash and Sutcliffe model efficiency; NSE) and, an accuracy analysis of landslide prediction was performed using auROC (area under Receiver Operating Curve) analysis. In results comparing with the calculated discharge-soil moisture content by SWAT model vs. actual observation data, R2 was 0.9 and NSE was 0.91 in discharge and, R2 was 0.7 and NSE was 0.79 in soil moisture, respectively. As a result of performing infinite slope stability analysis in the area where landslides occurred in the past based on simulated data (SWAT analysis result of 0.7~0.8), AuROC showed 0.98, indicating that the suggested prediction method was resonable. Based on this, as a result of predicting the characteristics of landslide occurrence by 2050 using climate change scenario (RCP 8.5) data, it was calculated that four landslides could occur with a soil moisture content of more than 75% and rainfall over 250 mm/day during simulation. Although this study needs to be evaluated in various regions because of a case study, it was possible to determine the possibility of prediction through modeling of subsurface flow mechanism, one of the most important attributes in landslide occurrence.

Analysis of Paddy Rice Water Footprint under Climate Change Using AquaCrop (AquaCrop을 이용한 기후변화에 따른 미래 논벼 물발자국 변화 분석)

  • Oh, Bu-Yeong;Lee, Sang-Hyun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.45-55
    • /
    • 2017
  • Climate change causes changes in rainfall patterns, temperature and drought frequency. Climate change impact influences on water management and crop production. It is critical issue in agricultural industry. Rice is a staple cereal crop in South Korea and Korea uses a ponding system for its paddy fields which requires a significant amount of water. In addition, water supply has inter-relationship with crop production which indicates water productivity. Therefore, it is important to assess overall impacts of climate change on water resource and crop production. A water footprint concept is an indicator which shows relationship between water use and crop yield. In addition, it generally composed of three components depending on water resources: green, blue, grey water. This study analyzed the change trend of water footprint of paddy rice under the climate change. The downscaled climate data from HadGEM3-RA based on RCP 8.5 scenario was applied as future periods (2020s, 2050s, 2080s), and historical climate data was set to base line (1990s). Depending on agro-climatic zones, Suwon and Jeonju were selected for study area. A yield of paddy rice was simulated by using FAO-AquaCrop 5.0, which is a water-driven crop model. Model was calibrated by adjusting parameters and was validated by Mann-Whitney U test statistically. The means of water footprint were projected increase by 55 % (2020s), 51 % (2050s) and 48 % (2080s), respectively, from the baseline value of $767m^2/ton$ in Suwon. In case of Jeonju, total water footprint was projected to increase by 46 % (2020s), 45 % (2050s), 12 % (2080s), respectively, from the baseline value of $765m^2/ton$. The results are expected to be useful for paddy water management and operation of water supply system and apply in establishing long-term policies for agricultural water resources.

A Kernel-level RTP for Efficient Support of Multimedia Service on Embedded Systems (내장형 시스템의 원활한 멀티미디어 서비스 지원을 위한 커널 수준의 RTP)

  • Sun Dong Guk;Kim Tae Woong;Kim Sung Jo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.6
    • /
    • pp.460-471
    • /
    • 2004
  • Since the RTP is suitable for real-time data transmission in multimedia services like VoD, AoD, and VoIP, it has been adopted as a real-time transport protocol by RTSP, H.323, and SIP. Even though the RTP protocol stack for embedded systems has been in great need for efficient support of multimedia services, such a stack has not been developed yet. In this paper, we explain embeddedRTP which supports the RTP protocol stack at the kernel level so that it is suitable for embedded systems. Since embeddedRTP is designed to reside in the UBP module, existing applications which rely ell TCP/IP services can proceed the same as before, while applications which rely on the RTP protocol stack can request HTP services through embeddedRTp API. EmbeddedRTP stores transmitted RTP packets into per session packet buffer, using the packet's port number and multimedia session information. Communications between applications and embeddedRTP is performed through system calls and signal mechanisms. Additionally, embeddedRTP API makes it possible to develop applications more conveniently. Our performance test shows that packet-processing speed of embeddedRTP is about 7.5 times faster than that oi VCL RTP for multimedia streaming services on PDA in spite that its object code size is reduced about by 58% with respect to UCL RTP's.

Application and evaluation of improving techniques for watershed water cycle to adapt climate change (Gyeongan-Cheon) (기후변화 적응 유역 물순환 개선 기술 적용 및 평가 (경안천))

  • Jang, Cheol Hee;Kim, Hyeon Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.461-461
    • /
    • 2017
  • 기후변화 적응 유역 물순환 개선 기술은 기후변화가 진행 중에 있거나 예상되는 지역에 대하여 강우-유출수를 지연, 저류, 침투시켜 지속가능한 물순환체계를 유지 회복하도록 하는 기술이라 할 수 있다. 본 연구에서는 기후변화에 따른 국내 유역의 특성 및 기후를 반영하기 수월한 물순환 개선 및 평가시스템을 국내 기술로 개발하였다. 개발된 유역 물순환 개선 및 평가시스템은 기존 국가연구개발사업을 통해 개발되고 사업화에 성공한 바 있는 유역 물순환 평가 모형인 CAT(Catchment hydrologic cycle Assessment Tool)을 수정 및 개선하여 기후변화에 따른 영향을 평가하고 적응 대책을 수립하기 위한 실무적인 소프트웨어이다. 침투트렌치, 식생침투트렌치, 습지, 저류지, 빗물탱크 등의 물순환개선시설에 대한 효과를 평가할 수 있도록 개별시설의 제원에 따른 물순환개선 효과를 정량적으로 평가할 수 있다. 본 연구의 대상유역으로는 팔당댐 상류의 경안천 유역을 선정하였다. 경안천 유역의 기후변화에 따른 물순환 개선 기술 적용을 위해서 기후변화 시나리오 자료는 기상청 수원 측후소의 1976~2099년 FGOALS-s2, HadGEM-ES, INM-CM4 RCP8.5 시나리오를 적용하였으며 분석기간은 2020s(2010~2039), 2050s(2040~2069), 2080s(2070~2099)로 구분하였다. Baseline은 수원 측후소 과거 30년 1971~2000년 자료를 이용하였고 각 시나리오별 수문성분 및 구조적 물순환 개선기술 적용에 따른 수문성분을 비교 분석하였다. 물순환 개선기술 시나리오 중 침투시설 시나리오는 도시 면적의 20%, 설계침투량은 일본 우수저류침투기술협회 기준인 단위면적($1m^2$)당 10mm 적용하였고, 빗물저장시설 시나리오의 저장시설의 용량은 수도법시행규칙(2011)의 빗물 이용시설기준(도시면적 ${\times}0.05$)을 적용하였다. 시나리오별 강우량은 HadGEM-ES가 증가폭이 크게 나타났고 INM-CM4는 2080s에서 감소 경향을 보였다. 증발산량은 거의 모든 시나리오에서 대부분 감소하였고, 개선기술 적용에 따라 크게 증가하거나 감소폭이 줄어들었다. 직접유출량 및 중간유출량은 기후변화 시나리오별 강우증가분에 따른 미세한 증가 양상을 보였고, 개선기술 적용에 따라 약간 증가하는 양상을 보였다. 지하수유출량의 경우 침투시설 적용으로 함양량이 크게 증가함에 따라 증가폭이 매우 크게 나타났다.

  • PDF

Evaluation of Flood Regulation Service of Urban Ecosystem Using InVEST mode (InVEST 모형을 이용한 도시 생태계의 홍수 조절서비스 평가)

  • Lee, Tae-ho;Cheon, Gum-sung;Kwon, Hyuk-soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.6
    • /
    • pp.51-64
    • /
    • 2022
  • Along with the urbanization, the risk of urban flooding due to climate change is increasing. Flood regulation, one of the ecosystem services, is implemented in the different level of function of flood risk mitigation by the type of ecosystem such as forests, arable land, wetlands etc. Land use changes due to development pressures have become an important factor in increasing the vulnerability by flash flood. This study has conducted evaluating the urban flood regulation service using InVEST UFRM(Urban Flood Risk Model). As a result of the simulation, the potential water retention by ecosystem type in the event of a flash flood according to RCP 4.5(10 year frequency) scenario was 1,569,611 tons in urbanized/dried areas, 907,706 tons in agricultural areas, 1,496,105 tons in forested areas, 831,705 tons in grasslands, 1,021,742 tons in wetlands, and 206,709 tons in bare areas, the water bodies was estimated to be 38,087 tons. In the case of more severe 100-year rainfall, 1,808,376 tons in urbanized/dried areas, 1,172,505 tons in agricultural areas, 2,076,019 tons in forests, 1,021,742 tons in grasslands, 47,603 tons in wetlands, 238,363 tons in bare lands, and 52,985 tons in water bodies. The potential economic damage from flood runoff(100 years frequency) is 122,512,524 thousand won in residential areas, 512,382,410 thousand won in commercial areas, 50,414,646 thousand won in industrial areas, 2,927,508 thousand won in Infrastructure(road), 8,907 thousand won in agriculture, Total of assuming a runoff of 50 mm(100 year frequency) was estimated at 688,245,997 thousand won. In a conclusion. these results provided an overview of ecosystem functions and services in terms of flood control, and indirectly demonstrated the possibility of using the model as a tool for policy decision-making. Nevertheless, in future research, related issues such as application of models according to various spatial scales, verification of difference in result values due to differences in spatial resolution, improvement of CN(Curved Number) suitable for the research site conditions based on actual data, and development of flood damage factors suitable for domestic condition for the calculation of economic loss.

Effects of Drought Stress and Nitrogen Fertilization on Growth and Physiological Characteristics of Pinus densiflora Seedlings Under Elevated Temperature and CO2 Concentration (대기 중 온도 및 CO2 농도 조절에 따른 건조 스트레스와 질소 시비가 소나무의 생장 및 생리적 특성에 미치는 영향)

  • Song, Wookyung;Lee, Bora;Cho, Nanghyun;Jung, Sungcheol;Kim, Eun-Sook;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.57-67
    • /
    • 2020
  • Pinus densiflora is the most widely distributed tree species in South Korea. Its ecological and socio-cultural attributes makes it one of the most important tree species in S. Korea. In recent times however, the distribution of P. densiflora has been affected by dieback. This phenomenon has largely been attributed to climate change. This study was conducted to investigate the responses of growth and physiology of P. densiflora to drought and nitrogen fertiliz ation according to the RCP 8.5 scenario. A Temperature Gradient Chamber (TGC) and CO2. Temperature Gradient Chamber (CTGC) were used to simulate climate change conditions. The treatments were established with temperature (control versus +3 and +5℃; aCeT) and CO2 (control: aCaT versus x1.6 and x2.2; eCeT), watering(control versus drought), fertilization(control versus fertilized). Net photosynthesis (Pn), stomatal conductance (gs), biomass and relative soil volumetric water content (VWC) were measured to examine physiological responses and growth. Relative soil VWC in aCeT significantly decreased after the onset of drought. Pn and gs in both aCeT and eCeT with fertiliz ation were high before drought but decreased rapidly after 7 days under drought because nitrogen fertilization effect did not last long. The fastest mortality was 46 days in aCeT and the longest survival was 56 days in eCeT after the onset of drought. Total and partial biomass (leaf, stem and root) in both aCeT and eCeT with fertiliz ation were significantly high, but significantly low in aCeT. The results of the study are helpful in addressing P. densiflora vulnerability to climate change by highlighting physiological responses related to carbon allocation under differing simulated environmental stressors.