• 제목/요약/키워드: RC test

검색결과 1,396건 처리시간 0.03초

공진주/비틂전단시험을 이용한 화강풍화지반의 동적변형특성 (Dynamic Deformation Characteristics of Granite Weathered Soils Using RC/TS Tests)

  • 김동수;고동희;윤준웅
    • 한국지반환경공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.35-46
    • /
    • 2004
  • 화강암질은 우리나라의 3분의 1을 차지하고 있으며, 특히 화강풍화지반은 우리나라 전역에 걸쳐 널리 분포하고 있다. 화강풍화지반은 민감한 입자 구조를 가지고 있어 비교란시료를 채취하기가 매우 어려우며 이로 인해 대부분의 연구는 재성형 시료로 수행되어 지고 있는 실정이다. 그러므로 비교란 또는 재성형 시료로 부터 얻어지는 탄성계수와 감쇠비 등의 변형특성을 비교하는 것은 신뢰성 있는 지반 거동을 이해하는데 중요하다. 본 눈문에서는 국내 화강풍화지반에 대해 다양한 공진주/비틂전단시험을 수행하였다. 그리고 화강풍화지반에 있어 비교란, 재성형 시료 각각의 탄성계수와 감쇠비 등의 변형특성이 비교되고 평가되었다.

  • PDF

국내 중저심도(20~80m) 수직구에 적합한 Stage-Cut 공법 개발 (Development of Stage-Cut Method for medium depth Shaft in Korea)

  • 홍창수;이지수;황대진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1522-1529
    • /
    • 2009
  • When a shaft is excavated in Korea, the mechanized method such as RBM(Raise Boring Machine) or RC(Raise Climber) is used independently of depth. But usually, the mechanized method is useful for the deep depth. On the contrary, when the depth of shaft is short, the cost of excavation increase. So in the case of shaft constructon less than 100m, we need to consider more suitable method of shaft construction such as Stage-cut which is one of blasting methods. Stage-Cut is widely used in the field of shaft construction in Japan as a tool of rock excavation. The main purpose of this study is to provide technical guidance for design and construction of shafts in rock, using Stage-cut method which is suitable for 20m~80m depth shaft. In this study, Blasting tests was performed in field, according to rock classification. Finally, the stage-cut method which is suitable for the geology of Korea was developed.

  • PDF

Quantitative impact response analysis of reinforced concrete beam using the Smoothed Particle Hydrodynamics (SPH) method

  • Mokhatar, S.N.;Sonoda, Y.;Kueh, A.B.H.;Jaini, Z.M.
    • Structural Engineering and Mechanics
    • /
    • 제56권6호
    • /
    • pp.917-938
    • /
    • 2015
  • The nonlinear numerical analysis of the impact response of reinforced concrete/mortar beam incorporated with the updated Lagrangian method, namely the Smoothed Particle Hydrodynamics (SPH) is carried out in this study. The analysis includes the simulation of the effects of high mass low velocity impact load falling on beam structures. Three material models to describe the localized failure of structural elements are: (1) linear pressure-sensitive yield criteria (Drucker-Prager type) in the pre-peak regime for the concrete/mortar meanwhile, the shear strain energy criterion (Von Mises) is applied for the steel reinforcement (2) nonlinear hardening law by means of modified linear Drucker-Prager envelope by employing the plane cap surface to simulate the irreversible plastic behavior of concrete/mortar (3) implementation of linear and nonlinear softening in tension and compression regions, respectively, to express the complex behavior of concrete material during short time loading condition. Validation upon existing experimental test results is conducted, from which the impact behavior of concrete beams are best described using the SPH model adopting an average velocity and erosion algorithm, where instability in terms of numerical fragmentation is reduced considerably.

Structural analysis of high-rise reinforced concrete building structures during construction

  • Song, Xiaobin;Gu, Xianglin;Zhang, Weiping;Zhao, Tingshen;Jin, Xianyu
    • Structural Engineering and Mechanics
    • /
    • 제36권4호
    • /
    • pp.513-527
    • /
    • 2010
  • This paper presents a three-dimensional finite element method based structural analysis model for structural analysis of reinforced concrete high-rise buildings during construction. The model considered the time-dependency of the structural configuration and material properties as well as the effect of the construction rate and shoring stiffness. Uniaxial compression tests of young concrete within 28 days of age were conducted to establish the time-dependent compressive stress-strain relationship of concrete, which was then used as input parameters to the structural analysis model. In-situ tests of a RC high-rise building were conducted, the results of which were used for model verification. Good agreement between the test results and model predictions was achieved. At the end, a parametric study was conducted using the verified model. The results indicated that the floor position and construction rate had significant effect on the shore load, whereas the influence of the shore removal timing and shore stiffness have much smaller. It was also found that the floors are more prone to cracking during construction than is ultimate bending failure.

Experimental and numerical analysis of RC structure with two leaf cavity wall subjected to shake table

  • Onat, Onur;Lourenco, Paulo B.;Kocak, Ali
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.1037-1053
    • /
    • 2015
  • This paper presents finite element (FE) based pushover analysis of a reinforced concrete structure with a two-leaf cavity wall (TLCW) to estimate the performance level of this structure. In addition to this, an unreinforced masonry (URM) model was selected for comparison. Simulations and analyses of these structures were performed using the DIANA FE program. The mentioned structures were selected as two storeys and two bays. The dimensions of the structures were scaled 1:1.5 according to the Cauchy Froude similitude law. A shake table experiment was implemented on the reinforced concrete structure with the two-leaf cavity wall (TLCW) at the National Civil Engineering Laboratory (LNEC) in Lisbon, Portugal. The model that simulates URM was not experimentally studied. This structure was modelled in the same manner as the TLCW. The purpose of this virtual model is to compare the respective performances. Two nonlinear analyses were performed and compared with the experimental test results. These analyses were carried out in two phases. The research addresses first the analysis of a structure with only reinforced concrete elements, and secondly the analysis of the same structure with reinforced concrete elements and infill walls. Both researches consider static loading and pushover analysis. The experimental pushover curve was plotted by the envelope of the experimental curve obtained on the basis of the shake table records. Crack patterns, failure modes and performance curves were plotted for both models. Finally, results were evaluated on the basis of the current regulation ASCE/SEI 41-06.

Pounding analysis of RC bridge considering spatial variability of ground motion

  • Han, Qiang;Dong, Huihui;Du, Xiuli;Zhou, Yulong
    • Earthquakes and Structures
    • /
    • 제9권5호
    • /
    • pp.1029-1044
    • /
    • 2015
  • To investigate the seismic pounding response of long-span bridges with high-piers under strong ground motions, shaking table tests were performed on a 1/10-scaled bridge model consisting of three continuous spans with rigid frames and one simply-supported span. The seismic pounding responses of this bridge model under different earthquake excitations including the uniform excitation and the traveling wave excitations were experimentally studied. The influence of dampers to the seismic pounding effects at the expansion joints was analyzed through nonlinear dynamic analyses in this research. The seismic pounding effects obtained from numerical analyses of the bridge model are in favorable agreement with the experimental results. Seismic pounding effect of bridge superstructures is dependent on the structural dynamic properties of the adjacent spans and characteristics of ground motions. Moreover, supplemental damping can effectively mitigate pounding effects of the bridge superstructures, and reduce the base shear forces of the bridge piers.

반복하중을 받는 철근콘크리트 휨부재의 비선형해석 (Nonlinear Analysis of Reinforced Concrete Flexural Members under Cyclic Loading)

  • 변근주;김영진
    • 콘크리트학회지
    • /
    • 제3권3호
    • /
    • pp.149-157
    • /
    • 1991
  • 본 논문은 반복하중을 받는 철근콘크리트 휨부재를 비선형해석하기 위한 것으로서, 재료의 구성방정식도출, 비선형 프로그램의 개발 및 개발된 프로그램의 검증으로 구성되어 있다. 재료의 구성방정식도출에서 콘크리트는 직교이방성재료로 모형화하고, 철근은 탄소성모형으로 취하였다. 반복하중하에서 휨부재의 압축부 콘크리트에 이력거동과 강성감소, 인장부 콘크리트에는 균열개폐거동과 균열변형률의 개념을 도입하여 콘크리트의 구성방정식을 도출하였다. 반북하중을 받는 철근콘크리트 휨부재를 해석하기 위하여 4절점등매개요소와 트러스요소의 유한요소정식과 증분반복기법을 적용한 유한요소프로그램을 도출하고, 반복하중을 받는 과소 철근콘크리트 보에 대한 실험결과와 해석결과를 비교하여 개발된 재료모형과 해석프로그램의 타당성을 검증하였다.

선가력 후 휨 보강한 RC보의 보강 효과에 관한 연구 (A Study on the Strengthening Effect of Reinforced Conctete BeamsFlexural Strengthening after Pre-loading)

  • 김정섭;신용석;조철희;김경옥
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권6호
    • /
    • pp.183-190
    • /
    • 2006
  • 본 연구는 철근콘크리트 보에 대해 선가력 후 보강재료별로 보강 효과를 파악하기 위하여 휨 실험한 결과, 다음과 같은 결론을 얻었다. 실험결과, CB 보강 실험체가 콘크리트 내부에 매입되어 일체 거동함으로써 휨내력 향상 및 연성능력 면에서 가장 우수한 것으로 나타났으며, 섬유계 보강재인 CFS와 GFS 보강 실험체 또한 우수한 내력을 가지는 것으로 나타났다. GSP 보강실험체의 경우 다른 보강 실험체에 비해 보강재 자체의 내력은 큰데 반해 콘크리트와 부착성이 떨어져 상대적으로 낮은 보강효과를 보였으며 실제 구조체에서는 콘크리트와 부착성이 개선 되어 보다 큰 보강효과를 발휘할 것으로 사료된다.

탄소섬유쉬트 보강 보의 실험 및 해석적 연구 (An Experimental and analytical study of CFS strengthened Beams)

  • 황진석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제2권4호
    • /
    • pp.177-185
    • /
    • 1998
  • This paper deals with the flexural behaviors of R.C beams strengthened by carbon fiber sheets. The behaviors of strengthened beams which were preloaded up to 50%, 60% and 70% of the ultimate load of unstrengthened beam are compared with that of a beam which was not preloaded. The structural behaviors of strengthened beams are compared with analytical method in terms of load-strain of concrete, load-strain of steel bar, load-strain of CFS and falilure load. Four cases of analytical method are investigated according to cracked section or partially cracked section and including strain hardening effect of steel bar or not. Comparing the results of test and analysis, both are similar in terms of load-strain of concrete, and falilure load, the results of analytical method underestimate the failure load. But each results of load-strain of steel bar, load-strain of CFS near at failure is some different, thus near at failure the composite action between CFS and upper concrete is assumed to be disturbed. Consequently, the analytical method was proved to be efficient and accurate in estimating the flexural response of CFS strengthened RC beams.

  • PDF

염해를 받는 철근콘크리트 구조물의 철근부식시기 예측시스템 개발에 관한 연구 (A Study on the Development of Corrosion Prediction System of RC Structures due to the Chloride Contamination)

  • 김도겸;박승범
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권1호
    • /
    • pp.121-129
    • /
    • 2000
  • In general. service life of the sea-shore concrete structures is largely influenced by the corrosion of reinforcing steel due to the chloride contamination, and the penetration of chloride ions into concrete is governed by concrete condition state as a micro-structure. In this study, characteristics of chloride diffusion in concrete are analyzed in accordance with the mixing properties and durability of concrete, by considering the facts that micro-structure of concrete varies with the mixing properties and can indirectly be analyzed by using the durability test. In order to predict the service life of existing concrete structures, chloride diffusion equation for the concrete structures under various service conditions and the major parameters used in that equation are formulated as the mathematical models. Based on the results of chloride diffusion analysis in accordance with the mixing properties and durability of concrete and mathematical models formulated in this study, a prediction system is developed to predict the corrosion initiation of reinforcing steel in the sea-shore concrete structures.

  • PDF