• 제목/요약/키워드: RC slabs

검색결과 182건 처리시간 0.019초

FE modelling of low velocity impact on RC and prestressed RC slabs

  • Ganesan, Partheepan;Kumar, S. Venkata Sai
    • Structural Engineering and Mechanics
    • /
    • 제71권5호
    • /
    • pp.515-524
    • /
    • 2019
  • The present study deals with the simulation of low velocity impact on prestressed and reinforced concrete (RC) slabs supported with different end conditions. The prestress is pre-applied on the RC slab in an analytical approach for the prestressed slab. RC slabs with dimensions $500{\times}600{\times}60mm$, $500{\times}600{\times}80mm$ and $500{\times}600{\times}120mm$ were used by changing support condition in two different ways; (i) Opposite sides simply supported, (ii) Adjacent sides simply supported with opposite corner propped. Deflection response of these specimens were found for the impact due to three different velocities. The effect of grade of concrete on deflection due to the impact of these slabs were also studied. Deflection result of $500{\times}500{\times}50mm$ slab was calculated numerically and compared the result with the available experimental result in literature. Finite element analyses were performed using commercially available ANSYS 16.2 software. The effectiveness of prestressing on impact resistant capacity of RC slabs are demonstrated by the way of comparing the deflection of RC slabs under similar impact loadings.

건축구조물의 슬래브 진동에 의한 사용성 평가 연구 (Evaluation of Serviceability due to Vibration of Slab)

  • 우운택
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.245-250
    • /
    • 2000
  • Recent building structures are superior in its ability but they are light and fiexible, and so have problems of vibration. In general, the serviceability of RC slabs was known to be good against vibration because of its hardness. However recent high-rise apartment slabs are mostly light and long, the serviceability about vibration problems of RC slabs was performed. Basic information and its influence on vibrations of RC slabs were revealed. Also, its serviceability against vibration was examined. Many tests were conducted on existing building located in Chung-Nam area. As a results, damping ratio, natural frequency, acceleration amplitude and displacement amplitude which were used to examine serviceability of the RC slabs were obtained. These results on the test building proved that its serviceability conditions were satified to meet the code against vibration.

  • PDF

Estimation of impact characteristics of RC slabs under sudden loading

  • Erdem, R. Tugrul
    • Computers and Concrete
    • /
    • 제28권5호
    • /
    • pp.479-486
    • /
    • 2021
  • Reinforced concrete (RC) slabs are exposed to several static and dynamic effects during their period of service. Accordingly, there are many studies focused on the behavior of RC slabs under these effects in the literature. However, impact loading which can be more effective than other loads is not considered in the design phase of RC slabs. This study aims to investigate the dynamic behavior of two-way RC slabs under sudden impact loading. For this purpose, 3 different simply supported slab specimens are manufactured. These specimens are tested under impact loading by using the drop test setup and necessary measurement devices such as accelerometers, dynamic load cell, LVDT and data-logger. Mass and drop height of the hammer are taken constant during experimental study. It is seen that rigidity of the specimens effect experimental results. While acceleration values increase, displacement values decrease as the sizes of the specimens have bigger values. In the numerical part of the study, artificial neural networks (ANN) analysis is utilized. ANN analysis is used to model different physical dynamic processes depending upon the experimental variables. Maximum acceleration and displacement values are predicted by ANN analysis. Experimental and numerical values are compared and it is found out that proposed ANN model has yielded consistent results in the estimation of experimental values of the test specimens.

접촉 폭발 하중을 받는 RC 슬래브의 국부 손상 및 내폭 성능 평가 (Evaluating Local Damages and Blast Resistance of RC Slabs Subjected to Contact Detonation)

  • 리령;이진영;민경환;윤영수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권1호
    • /
    • pp.37-45
    • /
    • 2013
  • 본 연구에서는 다양한 RC 슬래브의 접촉 발파 실험을 수행하여 내폭 성능을 평가하였다. RC 슬래브의 내폭 성능 향상을 위해 섬유 보강과 외부 CFRP 시트 보강을 도입하였다. 폭발하중 실험은 $2,000{\times}1,000{\times}100mm$ RC 슬래브를 제작하였고, 일반 콘크리트와 강섬유 보강 콘크리트, 하이브리드 PVA 섬유 보강 시멘트 복합체, 초고성능 콘크리트를 적용하였다. 접촉 발파로 생긴 RC 슬래브의 손상 정도를 크레틀, 스폴과 브리치의 직경과 깊이로 평가하였다. 실험 결과를 LS-DYNA 유한요소해석 프로그램과 Morishita 등의 예측식으로 검증하고 비교분석하였다. 분석 결과, LS-DYNA 프로그램을 이용하여 크레틀, 스폴, 브리치의 직경 및 깊이에 대한 개략적인 예측이 가능하며, 폭발하중 하에서 손상부의 거시적 거동을 모사함으로써 부재의 파괴 이력을 나타낼 수 있었다. 국부 손상에 대한 세가지 예측식이 소개되어 있으나 경험식으로써의 한계가 존재하며, 이에 대한 추가 연구가 필요하다고 판단된다.

RC구조물의 평면확장을 위한 리브형 하프슬래브의 거동 평가 (Behavior Evaluation of Half Slabs with Ribs to Extend Residence Area of RC Buildings)

  • 심규관;김상식;이정윤;최광호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.242-245
    • /
    • 2006
  • In this research, a precast concrete slab with two ribs was developed to increase the stiffness of slab. The developed precast slabs are allowed to cast concrete for multi stories and to construct concrete slabs without any props. Seven concrete slabs were tested to investigate the behavior of the developed precast slabs. Test results indicated that the developed slabs showed a similar behavior with the slabs without ribs.

  • PDF

반단면 프리캐스트 패널을 적용한 RC 슬래브의 내화성능 평가 (Evaluation of Fire Performance of RC Slabs with Half-Depth Precast Panels)

  • 정철헌;임초롱;김현준;주상훈
    • 대한토목학회논문집
    • /
    • 제30권4A호
    • /
    • pp.391-398
    • /
    • 2010
  • 본 연구에서는 반단면 프리캐스트 패널을 갖는 RC 슬래브에 대해서 비재하 상태에서 ISO-834 화재곡선을 적용한 가열시험을 수행하였다. 가열시험시 PP섬유 혼입되지 않은 실험체에서는 콘크리트의 폭렬이 발생되고, PP섬유가 혼입된 실험체에서는 폭렬이 발생되지 않았다. PP섬유가 혼입된 반단면 프리캐스트 패널을 적용한 RC 슬래브의 발생온도는 PP섬유가 혼입되지 않은 경우보다 낮은 수준을 보였다. 화재 가열실험 후 상온상태로 냉각된 RC 슬래브의 극한하중을 평가하기 위하여 3점 휨실험을 수행하였다. 실험결과, PP섬유가 혼입되지 않은 RC 슬래브는 PP섬유가 혼입된 실험체와 비교해 약 32.5% 정도 극한하중이 감소하는 결과를 보였다. 또한, PP섬유가 혼입된 반단면 프리캐스트 패널을 갖는 RC 슬래브의 극한하중은 PP섬유가 혼입된 전두께 RC 슬래브보다 큰 수준을 보였다. 이상의 결과에서 PP섬유의 혼입과 반단면 프리캐스트 패널 적용시 화재에 대한 저항능력이 향상됨을 확인하였다.

섬유시트로 보강된 RC 스래브의 실험적 연구 (An Experimental Study on RC Slab Strengthened with Fiber)

  • 이지용;최형석;김성도;정진환
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.519-524
    • /
    • 2007
  • Recently, Fiber sheets have been used for strengthening the deteriorated reinforced concrete RC slabs because of its resistant capacity of corrosion and repairing works. The purpose of this study is to carry out the experimental studies on thirteen kinds of RC slabs and to investigate the behavior of RC slabs form the experimental results. Test parameters are the strengthening material, the number of sheet layer and strengthening direction. The behavior of strengthened He: slabs is represented by crack load-deflection curves and maximum load. And the parametric study based on the nonlinear FEM analysis are performed and its results are discussed.

  • PDF

Numerical analysis of simply supported two-way reinforced concrete slabs under fire

  • Wenjun Wang;Binhui Jiang;Fa-xing Ding;Zhiwu Yu
    • Computers and Concrete
    • /
    • 제31권6호
    • /
    • pp.469-484
    • /
    • 2023
  • The response mechanism of simply supported two-way reinforced concrete (RC) slabs under fire was numerically studied from the view of stress redistribution using the finite element software ABAQUS. Results show that: (1) Simply supported two-way RC slabs undergo intense stress redistribution, and their responses show four stages, namely elastic, elastic-plastic, plastic and tensile membrane stages. There is no cracking in the fire area of the slabs until the tensile membrane stage. (2) The inverted arch effect and tensile membrane effect improve the fire resistance of the two-way slabs. When the deflection is L/20, the slab is in an inverted arch effect state, and the slab still has a good deflection reserve. The deformation rate of the slab in the tensile membrane stage is smaller than that in the elastic-plastic and plastic stages. (3) Fire resistance of square slabs is better than that of rectangular slabs. Besides, increasing the reinforcement ratio or slab thickness improves the fire resistance of the slabs. However, an increase of cover thickness has little effect on the fire resistance of two-way slabs. (4) Compared with one-way slabs, the time for two-way slabs to enter the plastic and tensile cracking stage is postponed, and the deformation rate in the plastic and tensile cracking stage is also slowed down. (5) The simply supported two-way RC slabs can satisfy with the requirements of a class I fire resistance rating of 90 min without additional fire protection.

An intelligent system for the design of RC slabs

  • Hossain, K.M.A.;Famiyesin, O.O.R.
    • Structural Engineering and Mechanics
    • /
    • 제12권3호
    • /
    • pp.297-312
    • /
    • 2001
  • The accurate finite element (FE) simulation of reinforced concrete (RC) slabs, having different boundary conditions and subjected to uniformly distributed loading, has led to the use of the developed FE models for generating results of ultimate loads from predictions of 'computer-model' RC slabs having different material and geometric properties. Equations derived from these results constitute the primary database of an intelligent computer-aided-design (CAD) system developed for accurate and fast information retrieval on arbitrary slabs. The system is capable of generating a secondary database through systems of interpolation and can be used for design assistance purposes.

보강된 단순지지 철근 콘크리트 슬래브의 구조 성능 (Structural Performance of Strengthened Reinforced Concrete Slabs with Simple Supports)

  • 신영수;이차돈;홍기섭;최완철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제1권1호
    • /
    • pp.89-96
    • /
    • 1997
  • The paper presents the results of experimental studies on two strengthening methods for reinforced concrete (RC) slabs. Bending tests on RC slabs have been carried out to investigate the influence of the increased thickness and externally bonded carbon fiber sheets. The interfaces of new and old concrete of increased thickness specimens have been chipped and treated with bonding agent. The conclusions have been reached as followings. (1) The behavior of specimens with chipped interface is good enough to calculate flexural strength of RC slabs for increased depth. (2) The flexural stiffness of increased depth specimen is severely increased and the deformation of RC slabs is controled. (3) The specimens with externally bonded carbon fiber sheets can be assumed to behave monolithically.

  • PDF