• Title/Summary/Keyword: RC slab bridge

Search Result 68, Processing Time 0.024 seconds

The Relationship between the Load Carrying Capacity and Transformed Impact Factor of Highway Bridge (교량의 공용내하력과 환산충격계수 관계 연구)

  • Chai, Won-Kyu;Lee, Myeong-Gu
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.138-143
    • /
    • 2012
  • In this thesis, the relationship between the load carrying capacity and the transformed impact factor of the highway bridges were studied. The bridges are classified according to superstructures type. The result of the comparison between the load carrying capacity and the transformed impact factor, if the load capacity ratio of 0.57, the transformed impact factor was less in order of RC T-beam bridge, RC slab bridge, PC beam bridge, I-beam bridge. By the regression analysis on these results, the empirical formulae to predict the the load carrying capacity of bridge were suggested.

An Experimental Study on the Net Type Prestress Strengthening Method for Slab Bridges (네트형 슬래브교 외부강선 보강공법의 실험적 연구)

  • 한만엽;황태정
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.363-366
    • /
    • 2003
  • This study is to develop a strengthening method for RC slab bridges and rigid-frame bridges with external prestressing. In this study, we design the slab specimen that have a strengthening of the DB-13 and set up the longitudinal tendons placed on both side of slab strengthens the whole bridge, and lateral tendons placed under the slab strengthens the middle of slab, and conveys the load at middle slab to both sides. Structural analysis for the tensile force for strengthening were analysed and we know that displacement and strain was improved from this test. This method has no upward roof work, so it is very convenient for installing. And no spaces under the slab are need, so it is good for shallow slabs which has less space inder the slab.

  • PDF

Minimum Thickness of Long Span RC Deck Slabs for Composite 2-girder Bridges Designed by KL-510 Load Model (KL-510 하중모형을 적용한 강합성 2거더교 RC 장지간 바닥판의 최소두께)

  • Park, Woo-Jin;Hwang, Hoon-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.72-78
    • /
    • 2014
  • The minimum thickness of long-span deck slab is proposed by checking the limit state according to the Korean highway bridge design code(limit state design). Both minimizing thickness and ensuring safety of deck slab are important design factors to increase a competitive price of the long span deck slabs. The required thicknesses for satisfying flexural capacity, preventing punching shear failure and limiting deflection were calculated by considering KL-510 load model which has increased total load compared to DB 24 from 432 kN to 510 kN. The results of the required thickness for various limit states were compared to propose the minimum thickness as a function of span length of deck slabs. The proposed minimum thickness is influenced by satisfying flexural capacity and limiting deflection. It turns out to be similar compared to the results of the previous study by ultimate strength design method even if the live load model was increased in total weights.

A Experimental Study on the Reinforcing Effects of RC Voided Slab Bridge with Steel Plate/CFS (강판 및 탄소섬유쉬트를 이용한 중공슬래브교의 보강 효과에 관한 실험 연구)

  • 구현본;이정우;정광회;정연주;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.787-792
    • /
    • 2002
  • The voided slab have many advantages, light weight, high load-distribution capacity, low cost and beautiful appearance, etc. But they have also many cracks due to difficulties in designs and construction, analysis, shrinkage, installation and rising force of voided tube. This paper presents the retrofit effects with steel plate(SP)/carbon fiber sheet(CFS) of RC voided slab. As a results of this study, it proved that the strip pattern has to be profitable than full-face pattern in performance such as crack, ultimate loads, stiffness. Retrofit length has many influence on retrofit effects, as the length increases, performance and stability of end blocks higher. Also, it proved that the retrofit on full-section has to be profitable than voided-section in performance, and the overlay length of CFS is desirable to extent approximately and welding(V-cut) has to be efficient than anchors in SP connection. But the kinds of end block and anchor has not influence on retrofit effects.

  • PDF

Evaluation of Load Carrying Capacity of RC Slab Bridges Considering Moment Redistribution (모멘트 재분배를 고려한 RC 슬래브교의 내하력 평가)

  • Kim Hu Seung;Kim Dae Joong;Yum Hwan Seok;Kim Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.335-338
    • /
    • 2005
  • This paper describes a proposal for evaluation load carrying capacity of reinforced concrete slab bridges considering the moment redistribution. Recognition of redistribution of moments can be important because it permits a more realistic appraisal of the actual load-carrying capacity of a structure, thus leading to improved economy. In addition, it permits the designer to modify, within limits, the moment diagrams for which members are to be designed. The predicted results shows that moment redistribution are different from estimated by the current KCI, ACI 318-02, EC2 provisions, and propose reasonable load carrying capacity of the reinforced concrete slab bridge.

  • PDF

Experimental Study on the Determination of Optimum Thickness of RC Deck Slabs by 100, 120 MPa High-Strength Concrete (100, 120 MPa급 고강도 콘크리트 적용 바닥판 적정두께 결정을 위한 실험적 연구)

  • Bae, Jae-Hyun;Hwang, Hoon-Hee;Park, Sung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.38-45
    • /
    • 2018
  • Bridges are structures where safety must be ensured. Generally, the destruction mechanism of bridge deck shows punching shear. Lately, the high-strength concrete is often used to increase the lifespan of bridges. The benefits of using the high-strength concrete are that it increases the durability and strength. On the contrary, it reduces the cross-section of the bridges. This study suggested the optimal thickness of bridge deck with application of high-strength concrete and the study evaluated its structural performance experimentally. The evaluation result shows that 180 mm and 190 mm of thickness are optimal for 100 MPa and 120 MPa high-strength concrete bridge deck respectively.

Damage-Spread Analysis of Heterogeneous Damage with Crack Degradation Model of Deck in RC Slab Bridges (RC 슬래브교의 바닥판 균열 열화모델에 따른 이종손상 확산 분석)

  • Jung, Hyun-Jin;An, Hyo-Joon;Kim, Jae-Hwan;Part, Ki-Tae;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.93-101
    • /
    • 2022
  • RC Slab bridges in Korea account for more than 70% of the total bridges for more than 20 years of service. As the number of aging structures increases, the importance of safety diagnosis and maintenance of structures increases. For highway bridges, cracks are a main cause of deck deterioration, which is very closely related to the decrease in bridge durability and service life. In addition, the damage rate of expansion joints and bearings accounts for approximately 73% higher than that of major members. Therefore, this study defined damage scenarios combined with devices damages and deck deterioration. The stress distribution and maximum stress on the deck were then evaluated using design vehicle load and daily temperature gradient for single and combined damage scenarios. Furthermore, this study performed damage-spread analysis and predicted condition ratings according to a deck deterioration model generated from the inspection and diagnosis history data of cracks. The heterogeneous damages combined with the member damages of expansion joints and bearings increased the rate of crack area and damage spread, which accelerated the time to reach the condition rating of C. Therefore, damage to bridge members requires proper and prompt repair and replacement, and otherwise it can cause the damage to bridge deck and the spread of the damage.

Evaluation of Structural Performance of RC Deck Slabs by High-Strength Concrete (고강도 콘크리트를 적용한 RC 바닥판의 정적 성능 평가)

  • Bae, Jae-Hyun;Hwang, Hoon-Hee;Park, Sung-Yong;Joh, Keun-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.89-95
    • /
    • 2016
  • Lately, the high-strength concrete is often used to increase the lifespan of bridges. The benefits of using the high-strength concrete are that it increases the durability and strength. On the contrary, it reduces the cross-section of the bridges. This study conducted structural performance tests of the bridge deck slabs applying high-strength concrete. As result of the tests, specimens of bridge deck slabs were destroyed through punching shear. Moreover, the tests exposed that the high-strength concrete bridge deck slabs satisfy the flexural strength and the punching shear strength at ultimate limit state(ULS). Also, limiting deflection of the concrete fulfilled serviceability limit state(SLS) criteria. These results indicated that the bridge deck slabs designed by high-strength concrete were enough to secure the safety factor despite of its low thickness.

An Experimental Study on the Adhesive Strength of Construction Joints of RC Slabs at Widened Bridges (교량 확폭시 RC 상판 접합부의 부착강도에 관한 실험적 연구)

  • 전준창;조병완;조효남
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.176-181
    • /
    • 1993
  • Recent increasing traffic volumes have made many bridges on highway be widened. Depending on the construction method of bridge widening, several undesirable problems have been arisen with the additional stresses resulting from de-staging of new bridge and the difference of the amount of creep and shrinkage between new and existing bridge. The main focus of this paper is given to investigate the variation of the adhesive strength of steel bar and construction joints of new and old concrete slab. The result shows that repeated vibration loadings was caused some bad effects on the construction joints between new and existing bridges.

  • PDF

Artificial neural network model for the strength prediction of fully restrained RC slabs subjected to membrane action

  • Hossain, Khandaker M.A.;Lachemi, Mohamed;Easa, Said M.
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.439-454
    • /
    • 2006
  • This paper develops an artificial neural network (ANN) model for uniformly loaded restrained reinforced concrete (RC) slabs incorporating membrane action. The development of membrane action in RC slabs restrained against lateral displacements at the edges in buildings and bridge structures significantly increases their load carrying capacity. The benefits of compressive membrane action are usually not taken into account in currently available design methods based on yield-line theory. By extending the existing knowledge of compressive membrane action, it is possible to design slabs in building and bridge decks economically with less than normal reinforcement. The processes involved in the development of ANN model such as the creation of a database of test results from previous research studies, the selection of architecture of the network from extensive trial and error procedure, and the training and performance validation of the model are presented. The ANN model was found to predict accurately the ultimate strength of fully restrained RC slabs. The model also was able to incorporate strength enhancement of RC slabs due to membrane action as confirmed from a comparative study of experimental and yield line-based predictions. Practical applications of the developed ANN model in the design process of RC slabs are also highlighted.