• Title/Summary/Keyword: RC shear wall system

Search Result 59, Processing Time 0.017 seconds

Application of the Direct Displacement Based Design Methodology for Different Types of RC Structural Systems

  • Malekpour, Saleh;Dashti, Farhad
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.2
    • /
    • pp.135-153
    • /
    • 2013
  • This study investigates the direct displacement based design (DDBD) approach for different types of reinforced concrete structural systems including single moment-resisting, dual wall-frame and dual steel-braced systems. In this methodology, the displacement profile is calculated and the equivalent single degree of freedom system is then modeled considering the damping characteristics of each member. Having calculated the effective period and secant stiffness of the structure, the base shear is obtained, based on which the design process can be carried out. For each system three frames are designed using DDBD approach. The frames are then analyzed using nonlinear time-history analysis with 7 earthquake accelerograms and the damage index is investigated through lateral drift profile of the models. Results of the analyses and comparison of the nonlinear time-history analysis results indicate efficiency of the DDBD approach for different reinforced concrete structural systems.

Distribution of strength and stiffness in asymmetric wall type system buildings considering foundation flexibility

  • Atefatdoost, Gh.R.;Shakib, H.;JavidSharifi, B.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.281-292
    • /
    • 2017
  • Architecture constraints in buildings may typically cause irregularities in the distribution of stiffness and mass and consequently causes non-compliance of centers of mass, stiffness and strength. Such buildings are known as asymmetric buildings the distribution of strength and stiffness is one of whose main challenges. This distribution is more complicated for concrete buildings with RC shear walls in which stiffness and strength are interdependent parameters. The flexibility under the foundation is another subject that can affect this distribution due to the variation of dynamic properties of the structure and its constituting elements. In this paper, it is attempted to achieve an appropriate distribution pattern by expressing the effects of foundation flexibility on the seismic demand of concrete shear walls and also evaluate the effects of this issue on strength and stiffness distribution among lateral force resistant elements. In order to understand the importance of flexibility in strength and stiffness distribution for an asymmetric building in different conditions of under-foundation flexibility, the assigned value to each of the walls is numerically calculated and eventually a procedure for strength and stiffness distribution dependencies on flexibility is provided.

Development of a Precast Concrete Structural Wall Adopting Improved Connections in the Plastic Hinge Region (소성힌지 영역의 접합부를 개선한 PC 구조벽체의 개발)

  • Kang, Su-Min;Oh, Jae-Keun;Kim, Ook-Jong;Lee, Do-Bum;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.15-26
    • /
    • 2010
  • The purpose of this study is to develop a precast concrete structural wall system that can assure reliable seismic performance. In previous studies, the connections of precast concrete structural walls have had some problems in their seismic performance. Therefore, this research proposes precast concrete structural walls which have an improved seismic performance. One is a hybrid precast concrete structural wall that is composed of a reinforced concrete component and a precast concrete component, and another is a precast concrete wall whose reinforcements have a partially reduced section and are partially unbonded from the surrounding concrete. To evaluate the seismic performance of the proposed precast concrete structural walls, the behavior of three specimens, including a reinforced concrete wall, were subjected to reversed cyclic combined flexure and shear. According to the test results, the proposed precast concrete structural walls have reliable seismic performance.

Effects of Seismic Loads with Different Return Period on Residential Building with RC Shear Wall Structure under Construction (주거용 RC 벽식 건물의 시공 중 재현주기에 따른 지진하중의 영향)

  • Choi, Seong-Hyeon;Kim, Jea-Yo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.43-50
    • /
    • 2022
  • Even though the structural safety is confirmed in the design stage, the structural safety is not guaranteed in the construction stage because the structural system is not completed. In addition, since the construction period is shorter than the period of use of the building after completion, it is excessive to apply the same seismic load to the construction stage as in the design stage. ASCE 37-14 presents the concept of seismic load reduction factor during construction, but does not provide a clear application method. Therefore, in this study, the seismic load reduced according to the return period was applied to the example model of a residential middle-rise RC building. The construction stage of the example model was divided into five-story units, and seismic load with the change of the return period was applied to the construction stage models to analyze the change of seismic load during construction and to check the sectional performances of structural members. By comparing the design strength ratio of the shear wall at the design stage and the construction stage, the range of seismic load magnitudes that can assure the safety during construction of a residential middle-rise RC building was analyzed in terms of the return period.

Seismic Performance Evaluation of Confined Masonry Wall System Considering of Shear-Depth Ratio (전단스팬비 영향을 고려한 RC구속조적조 벽체의 내진성능평가)

  • Kim Kyong-Tae;Seo Soo-Yeon;Yoon Seung Joe;Sung Ki Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.1-4
    • /
    • 2005
  • To investigate the effective seismic strengthening methods for masonry walls in developing countries, a total of four confined masonry (CM) walls were constructed and tested. In order to investigate the effect of the height of application point of lateral loads and reinforcing steel bars in walls and columns for the improvement of the seismic behavior of confined concrete block masonry walls, an experimental research program is conducted. The heights of inflection point considered were 0.67 and 1.11 times the height of the wall measured from the top of foundation beam. The constant vertical axial stress applied was 0 MPa. During the test, cracking patterns, load-deflection data, and strains in reinforcement and walls in critical locations was measured. From test data, it was showed that the seismic performance of confined concrete block masonry walls was significantly affected by test variables.

  • PDF

Seismic Behavior of a Five-story RC Structure Retrofitted with Buckling-Restrained Braces Using Time-dependent Elements (시간종속요소를 이용한 5층 RC건축물의 비좌굴가새 보강에 대한 내진거동)

  • Shin, Ji-Uk;Lee, Ki-Hak;Lee, Do-Hyung;Jeong, Seong-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.11-21
    • /
    • 2010
  • This study presents seismic responses of 5-story reinforced concrete structures retrofitted with the buckling-restrained braces using a time-dependent element. The time-dependent element having birth and death times can freely be activated within the user defined time intervals during the time history analysis. The buckling-restrained brace that showed the largest energy dissipation capacity among the test specimens in previous research was used for retrofitting the RC buildings in this study. It was assumed that the first story of the damaged building under the first earthquake was retrofitted with the buckling-restrained braces considered as the time-dependent element before the second of the successive earthquakes occurs. Under this assumption, this paper compares seismic responses of the RC structures with the time-dependent element subjected to the successive earthquake. Subjected to the second earthquake, it was observed that activation of the BRB systems largely decreases deformation of the moment frame where the damage was concentrated under the first earthquake. However, damages to the shear wall systems were increased after activation of the BRB systems. Since the cumulative damages of the shear wall systems were infinitesimal compared with the retrofit effect of the moment frame, the BRB system was effective under the successive earthquake.

Comparative analysis of existing reinforced concrete buildings damaged at different levels during past earthquakes using rapid assessment methods

  • Sezer Aynur;Hilal Meydanli Atalay
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.793-808
    • /
    • 2023
  • Türkiye is located in a region where destructive earthquakes are frequently experienced due to its geological characteristics and geographical location. Therefore, considering the possibility of a devastating earthquake at any time, determining the reinforced concrete (RC) building seismic safety, constructed before or after the current seismic buildings code, is one of the most important issues to be completed firstly. For this purpose, rapid assessment methods developed to quickly determine the seismic safety of buildings are available in the literature. Comparison of the principles of Principles of the Determination of Risky Structures-2019, Column and Wall Index Method, P25 Scoring Method and Improved Discriminant Analysis Method, which are among these methods, have been aimed within the scope of this study. Within the scope of this paper, a total of 43 buildings in the Yalova/Çınarcık region of Türkiye that the damage level was determined by street observation method immediately after the 1999 Kocaeli (Izmit) Earthquake; 15 buildings with heavy damage and 28 buildings with moderate damage were examined by rapid assessment methods. Although the risk detection difference was not separated as a clear line in any of the methods used, the results obtained from the rapid assessment methods are evaluated as being compatible with the detected after earthquake structural seismic behavior of the buildings. The PDRS-2019 and column and wall index method gave the most approximate results. In the results obtained from the analyzes; structural features such as number of floors, frame continuity, soft/weak story irregularity, effective shear strength area, existence of heavy overhangs in plan, type of structural system have been found to be significantly effective on the earthquake behavior of buildings.

Inelastic Behavior of Beam-Column Joints Composed of RC Column and RS Beams (RC 기둥과 RS 보로 이루어진 보-기둥 접합부의 비탄성 거동)

  • 김욱종;윤성환;문정호;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.734-741
    • /
    • 2002
  • An experimental study was carried out for beam-column joints composed of RC column and RS beams. The purpose of this study is to examine the inelastic seismic behavior for the RC-RS connection. Two interior and one exterior beam-column assemblies with variable moment ratios were tested. Experimental results showed that strength and deformability except stiffness were satisfactory. It is considered that the lack of stiffness was due to the slipping of steel beam from RS beam. The behavioral characteristics of the RC-RS connection were evaluated according to the quideline suggested by Hawkins et al. Nominal strength at 5 % joint distortion was not satisfactory, but all the other requirements, such as strength preserving capability, energy dissipation, and initial stiffness and strength ratios after peak load were satisfactory compared with the guideline. Thus it was concluded that the RC-RS connections can maintain ductility with excellent energy-dissipating capacity if being provided with appropriate reinforced structural system such as RC core wall for the initial lateral stiffness.

Effect of Edge Confinement on Deformation Capacity in the Isolated RC Structural Walls (벽체 단부의 횡보강근 양에 따른 변형능력의 평가)

  • 한상환;오영훈;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.101-112
    • /
    • 1999
  • Structural walls have been mostly used for the design of reinforced concrete buildings in seismic areas because they play a role as an efficient bracing system and offer great potential for lateral load resistance and drift control. The lateral resistance system for the earthquake load should be designed to have enough ductility and stable hysteretic response in the critical regions where plastic deformation occurred beyond yielding. The behavior of the reinforced concrete element to experience large deformation in the critical areas by a major earthquake is affected by the performance of the confined core concrete. Thus, the confinement of concrete by suitable arrangements of transverse reinforcement results in a significant increase in both the strength and ductility of compressed concrete. This paper reports the experimental results of reinforced concrete structural walls for wall-type apartment structure under axial loads and cyclic reversal of lateral loads with different confinement of the boundary elements. The results show that confinement of the boundary element by open 'U'-bar and cross tie is effective. The shear strength capacity is not increased by the confinement but deformation capacity is improve.