• 제목/요약/키워드: RC member

Search Result 278, Processing Time 0.021 seconds

Integrated Genetic Algorithm with Direct Search for Optimum Design of RC Frames (직접탐색을 이용한 유전자 알고리즘에 의한 RC 프레임의 최적설계)

  • Kwak, Hyo-Gyoung;Kim, Ji-Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.21-34
    • /
    • 2008
  • An improved optimum design method for reinforced concrete frames using integrated genetic algorithm(GA) with direct search method is presented. First, various sets of initially assumed sections are generated using GA, and then, for each resultant design member force condition optimum solutions are selected by regression analysis and direct search within pre-determined design section database. In advance, global optimum solutions are selected from accumulated results through several generations. Proposed algorithm makes up for the weak point in standard genetic algorithm(GA), that is, low efficiency in convergence causing the deterioration of quality of final solutions and shows fast convergence together with improved results. Moreover, for the purpose of elevating economic efficiency, optimum design based on the nonlinear structural analysis is performed and therefore makes all members resist against given loading condition with the nearest resisting capacity. The investigation for the effectiveness of the introduced design procedure is conducted through correlation study for example structures.

Experimental Study on the Capacity of Holed RC Beam Mixed with Waste Tire Particles (폐타이어 유공 철근콘크리트보의 내력에 관한 실험적연구)

  • Son, Ki-Sang;Lee, Won-Gyun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.54-62
    • /
    • 2005
  • This Study is to find out how RC beam mixed with sawdust acts comparing with normal beam without sawdust mixture, and how they can be applied to the actual structural frame, despite a Int that they are mixed with waste material : saying sawdust. ED3H1, ED3H2, ED5H1, ED5H2, ED3H1UB, ED5H1UB, ED3H2L, ED5H2L and Normal without sawdust mixture are main factor to be tested here in order to apply them to the actual case. D and H means diameter 3cm or 5cm, and holes one and two respectively. And all variables are tested with each two for one variables. Test results are compared using crack diagrams and strain & loads. There are eleven(11)% capacity decrease between ED 3H1 and ED5H1 in rebar, strain. Left and right side crack shapes are much similar in variable ED3H2L having maximum capacity 14.5 tone. ED5H2L having maximum capacity thirteen(13)tone, in case of normal 19.6 tone. Two holes in beam rather on the longitudinal direction than on the forcing direction can be more effective to keep the original capacity of the beam because this case can distribute load more uniformly. There is 33% capacity decreased in case of diameter five(5)cm, compared to diameter three(3)cm. Two holes give thirty nine(39) percent capacity decrease than one of diameter three(3)cm.

Flexural Behavior of RC Beam Made of Slurry Infiltrated Fiber Concrete (슬러리 충전 강섬유 콘크리트로 제작된 RC 보의 휨 거동)

  • Han, Sang-Hoon;Jeon, Byeong-Gu;Hong, Ki-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.26-33
    • /
    • 2018
  • This paper presents experimental and analytical results on flexural behavior of flexural members made of SIFCON. Twelve SIFCON beams were subjected to bending tests and their flexural behavior was evaluated. Experimental variables included steel fiber type, presence of tensile reinforcement, and height of section. The specimens using Type-B steel fibers, which had better pullout resistance than Type-A steel fibers, showed flexural failure behavior without shear failure. The aspect ratio of steel fiber had a great influence on the behavior of SIFCON beams without tensile steel, however the effect on the behavior of SIFCON beams was negligible. In addition, the flexural strength equation for SIFCON was proposed in the study. The mean and standard deviation of the ratios of the predicted value to the experimental value are 1.02 and 0.04, respectively. Therefore, the proposed flexural strength equation can be useful for the design and performance evaluation of SIFCON beam.

Numerical Study on Seismic Behavior of a Three-Story RC Shear Wall Structure (3층 전단벽 구조물의 지진응답에 관한 수치해석)

  • Park, Dawon;Choi, Youngjun;Hong, Jung-Wuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.111-119
    • /
    • 2021
  • A shear wall is a structural member designed to effectively resist in-plane lateral forces, such as strong winds and earthquakes. Due to its efficiency and stability, shear walls are often installed in residential buildings and essential facilities such as nuclear power plants. In this research, to predict the results of the shaking table test of the three-story shear wall RC structure hosted by the Korea Atomic Energy Research Institute, three types of numerical modeling techniques are proposed: Preliminary, Calibrated 1, and Calibrated 2 models, in order of improvement. For the proposed models, an earthquake of the 2016 Gyeongju, South Korea (peak ground acceleration of 0.28 g) and its amplified earthquake (peak ground acceleration of 0.50 g) are input. The response spectra of the measuring points are obtained by numerical analysis. Good agreement is observed in the comparisons between the experiment results and the simulation conducted on the finally adopted numerical model, Calibrated 2. In the process of improving the model, this paper investigates the influences of the mode shape, material properties, and boundary conditions on the structure's seismic behavior.

Experiment for the Improvement of Fire Resistance Capacity of Reinforced Concrete Flexural Member Strengthened with Carbon Fiber Reinforced Polymer (CFRP로 보강된 철근콘크리트 휨부재의 내화성능 개선을 위한 실험)

  • Lim, Jong-Wook;Seo, Soo-yeon;Song, Se-Ki
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.19-27
    • /
    • 2017
  • This paper is a study to improve the fire-resistance capacity of reinforced concrete (RC) members strengthened by fiber-reinforced-polymer (FRP). The fire resistance of the RC members strengthened by FRP was evaluated through high temperature exposure test. In order to improve the fire resistance of the FRP reinforcing method, a fire-proof board was attached to the reinforced FRP surface and then the high temperature exposure test was carried out to evaluate the improvement of the fire resistance performance. It was confirmed that the resistance to high temperature of NSMR could be improved somewhat compared with that of EBR from the experiment that exposed to high temperature under the load corresponding to 40% of nominal strength. When 30 mm thick fire-resistance (FR) board is attached to the FRP surface, the surface of the reinforced FRP does not reach $65^{\circ}C$, which is the glass transition temperature (GTT) of the epoxy until the external temperature reaches $480^{\circ}C$. In particular, when a high performance fire-proof mortar was first applied prior to FR board attachment, the FRP portion did not reach the epoxy glass transition temperature until the external temperature reached $600^{\circ}C$.

Shear Strength Estimation Model for Reinforced Concrete Members (철근콘크리트 부재의 전단강도 산정모델)

  • Lee, Deuckhang;Han, Sun-Jin;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.1-8
    • /
    • 2020
  • This study presents a shear strength estimation model, in which the shear failure of a reinforced concrete (RC) member is assumed to be governed by the flexure-shear mechanism. Two shear demand curves and corresponding potential capacity curves for cracked tension and uncracked compression zones are derived, for which the bond mechanism developed between reinforcing bars and surrounding concrete is considered in flexural analysis. The shear crack concentration factor is also addressed to consider the so-called size effect induced in large RC members. In addition,unlike exising methods, a new formulation was addressed to consider the interaction between the shear contributions of concrete and stirrup. To verify the proposed method, an extensive shear database was established, and it appeared that the proposed method can capture the shear strengths of the collected test specimens regardless of their material properties, geometrical features, presence of stirrups, and bond characteristics.

Quantification of Half Cell Potential with Mix Properties in RC Member under Long-Term Chloride Exposure Conditions (장기 염해에 노출된 RC 부재의 배합 특성을 고려한 반 전위의 정량화)

  • Yoon, Yong-Sik;Jeong, Gi-Chan;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.307-313
    • /
    • 2022
  • In this study, the correlation between Half Cell Potential(HCP) and the corrosion influencing factors was analyzed with considering three levels of water-cement ratio, the concentration of chloride solution, and cover depth. As a result of long-term corrosion monitoring, HCP behavior was close to the critical corrosion potential(-350 mV) in all water-cement ratios in the case of 3.5 % and 7.0 % chloride concentration. Regarding the passed charge test in 548 curing days, the passed charge results were improved to 'Moderate' grade. Multiple regression analysis was performed to evaluate the correlation between corrosion influencing factors and HCP, and it was evaluated that the effects of influencing factors to HCP were in the order of chloride concentration, water-cement ratio, and cover depth. In the case of the relationship between HCP and the passed charge, the coefficient of determination showed a high level of 0.9, which yielded a close correlation between the passed charge and HCP.

Plastic hinge length for coupled and hybrid-coupled shear walls

  • Abouzar Jafari;Meysam Beheshti;Amir Ali Shahmansouri;Habib Akbarzadeh Bengar
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.367-383
    • /
    • 2023
  • A coupled wall consists of two or more reinforced concrete (RC) shear walls (SWs) connected by RC coupling beams (CBs) or steel CBs (hybrid-coupled walls). To fill the gap in the literature on the plastic hinge length of coupled walls, including coupled and hybrid-coupled shear walls, a parametric study using experimentally validated numerical models was conducted considering the axial stress ratio (ASR) and coupling ratio (CR) as the study variables. A total of sixty numerical models, including both coupled and hybrid-coupled SWs, have been developed by varying the ASR and CR within the ranges of 0.027-0.25 and 0.2-0.5, respectively. A detailed analysis was conducted in order to estimate the ultimate drift, ultimate capacity, curvature profile, yielding height, and plastic hinge length of the models. Compared to hybrid-coupled SWs, coupled SWs possess a relatively higher capacity and curvature. Moreover, increasing the ASR changes the walls' behavior to a column-like member which decreases the walls' ultimate drift, ductility, curvature, and plastic hinge length. Increasing the CR of the coupled SWs increases the walls' capacity and the risk of abrupt shear failure but decreases the walls' ductility, ultimate drift and plastic hinge length. However, CR has a negligible effect on hybrid-coupled walls' ultimate drift and moment, curvature profile, yielding height and plastic hinge length. Lastly, using the obtained results two equations were derived as a function of CR and ASR for calculating the plastic hinge length of coupled and hybrid-coupled SWs.

Effect of Tension, Compression and Lateral Reinforcement In Ductility Ratio in RC Flexural Members (철근콘크리트 휨 부재에서 인장, 압축 및 횡보강근이 연성률에 미치는 효과)

  • 연규원;박찬수
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.553-560
    • /
    • 2001
  • The ductility capacity should be estimated for inelastic analysis and design of reinforced concrete flexural members. Therefore, to estimate the ductility capacity, the model of moment-curvature relationship of reinforced concrete flexural member is assumed in this study. The curvature, rotation, and displacement(deflection) of reinforced concrete cantilever beams are analyzed and tested. The analytical results are compared with the test results. According to the analytical and test results, the assumed model of moment-curvature relationship in this study is adequate in flexural analysis of reinforced concrete members because the analytical results are well agreed with the test results, and it is resonable to express the ductility capacity in the rotation or displacement ductility, Because the curvature ductility is the limited index in a certain section. It is investigated that the ductility capacity is proportional to lateral reinforcement and compression reinforcement and inversely proportional to tension reinforcement.

A Study on Flexural and Shear Behavior of the Structure with Steel Plate Concrete to Reinforced Concrete Member's Connection (철근 콘크리트와 강판 콘크리트 간 이질접합부로 구성된 구조물의 휨 및 전단거동 특성 연구)

  • Hwang, Kyeong Min;Lee, Kyung Jin;Lee, Jong Bo;Won, Deok Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.267-275
    • /
    • 2012
  • This paper describes the experimental study on the structural behavior of the joint plane between a RC(Reinforced Concrete) wall and a SC(Steel Plate Concrete) wall under out-of plane flexural loads and in-plane shear loads. The test specimens were produced with L and I shape to assess efficiently flexural and shear behavior of the structures. In order to consider dynamic loads such as earthquake, cyclic loading tests were carried out. As results of the out-of plane flexural tests, ductile failure mode of vertical bars was shown under a push load and the failure load was more than nominal strength of the specimen. And the latter test was performed to verify the variation which was composition presence of horizontal bars in the SC member. The test results showed that capacity of the specimens was more than their nominal strength regardless of composition presence of horizontal bars.