• 제목/요약/키워드: RC building frame

검색결과 187건 처리시간 0.025초

Seismic repair of captive-column damage with CFRPs in substandard RC frames

  • Tunaboyu, Onur;Avsar, Ozgur
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.1-13
    • /
    • 2017
  • The effectiveness of the repair scheme for the damaged captive-columns with CFRPs (Carbon Fiber Reinforced Polymer) was investigated in terms of response quantities such as strength, ductility, dissipated energy and stiffness degradation. Two 1/3 scale, one-story one-bay RC (Reinforced Concrete) frames were designed to represent the substandard RC buildings in Turkish building stock. The first one, which is the reference specimen, is the bare frame without infill wall. Partial infill wall with opening was constructed between the columns of the second frame and this caused captive column defect. Severe damage was observed with the concentration of shear cracks in the second specimen columns. Then, the damaged members were repaired by CFRP wrapping and retested. For the three test series, similar reversed cyclic lateral displacement under combined effect of axial load was applied to the top of the columns. Overall response of the bare frame was dominated by flexural cracks. Brittle type of shear failure in the column top ends was observed in the specimen with partial infill wall. It was observed that former capacity of damaged members of the second frame was recovered by the applied repair scheme. Moreover, ultimate displacement capacity of the damaged frame was improved considerably by CFRP wrapping.

ECC 날개벽 요소로 보강된 비내진상세를 갖는 철근콘크리트 골조의 내진성능 (The Seismic Performance of Non-Ductile Reinforced Concrete (RC) Frames with Engineered Cementitious Composite (ECC) Wing Panel Elements)

  • 강대현;옥일석;윤현도;김재환;양일승
    • 콘크리트학회논문집
    • /
    • 제27권5호
    • /
    • pp.541-549
    • /
    • 2015
  • 본 논문에서는 고인성 시멘트 복합체(ECC)가 적용된 날개벽 요소의 면 접합방식에 따른 평가를 실시하였다. 또한 비내진상세를 갖는 RC 골조에 ECC날개벽 요소 보강하여 보강 유무에 따른 내진성능평가를 실시하였다. 면 접합 방법에 따른 거동 특성을 비교하기 위하여 2면 접합은 상 하부 보에 3면 접합은 상 하부 보 및 기둥에 접합하여 실험을 실시 하였다. 또한 비내진상세를 갖는 기존 구조체와의 일체로 거동하는 합성거동을 위해 3면 접합 방식으로 ECC날개벽 요소 보강을 실시하였다. ECC날개벽 요소 실험과 골조 실험은 점증되는 층간변위에 따라 2회씩 반복가력하여 실험을 진행하였다. 실험 결과 ECC 날개벽 요소 실험체의 경우 3면 접합이 2면 접합보다 우수한 내진성능 나타내었다. 각각의 실험체는 우수한 재료 특성으로 인하여 미세한 다수의 균열이 ECC날개벽 요소 전면에 폭넓게 분포하였다. 또한 보통 콘크리트와 달리 최대강도 이후 연성적인 거동을 나타내었으며, 이에 우수한 에너지소산능력을 나타내었다. ECC날개벽 요소를 보강한 실험체와 기존 골조에서는 ECC날개벽 요소 보강에 따른 최대강도 이후 연성적인 거동을 나타내었다. 이에 따라 에너지소산능력이 증가하였으며, 강성저하 또한 완만한 곡선을 나타내며 기존 골조보다 우수한 내진특성을 나타내었다. 이에 ECC 날개벽 요소의 보강이 비내진상세를 갖는 구조체에 우수한 내진 특성을 부여하는 판단된다.

Seismic performance evaluation of a RC special moment frame

  • Kim, Taewan;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • 제27권6호
    • /
    • pp.671-682
    • /
    • 2007
  • The probability and the reliability-based seismic performance evaluation procedure proposed in the FEMA-355F was applied to a reinforced concrete moment frame building in this study. For the FEMA procedure, which was originally developed for steel moment frame structures, to be applied to other structural systems, the capacity should be re-defined and the factors reflecting the uncertainties related to capacity and demand need to be determined. To perform the evaluation procedure a prototype building was designed per IBC 2003, and inelastic dynamic analyses were conducted applying site-specific ground motions to determine the parameters for performance evaluation. According to the analysis results, distribution of the determined capacities turned out to be relatively smaller than that of the demands, which showed that the defined capacity was reasonable. It was also shown that the prototype building satisfied the target performance since the determined confidence levels exceeded the objectives for both local and global collapses.

PC 및 RC공동주택 골조공사에 대한 공사기간 절대비교 (Absolute Comparison of Construction Periods between Precast Concrete and Reinforced Concrete Apartment Buildings )

  • 김기호;이범식;김진원;김연호;이동건;손정락
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.293-294
    • /
    • 2023
  • In accordance with recent changes in construction trends, interest in introducing the OSC, such as the Precast Concrete, is increasing in apartment buildings. In domestic studies, studies on the prediction of the construction period of PC apartment buildings through simulation have been conducted, but there is no study on the comparison of the construction period according to the actual construction of Precast Concrete(PC) and Reinforced Concrete(RC). Therefore, this study seeks to grasp the technology of the current PC construction method and to secure the original technology of project management through comparison of the absolute time of frame construction for PC and RC buildings composed of the same plane.

  • PDF

철근콘크리트 골조공사의 프로세스 및 공정 공백 산출 시뮬레이션 모형 개발 (Development of Computing Model for the Process and Operation Interval of Reinforced Concrete Work using Web-CYCLONE)

  • 박상민;손창백;이동은
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.341-343
    • /
    • 2012
  • This study introduces a method for computation of process and operation gap in the specific construction operation(i.e., RC frame construction applying a block-grouping scheme) using CYCLONE-based simulation modeling and analysis technique. Since uncertainty of construction environment exists, a thoughtful production planning is required to effectively deal with a risk resulting in schedule delay in advance. This study presents the concepts of a time delay occurred in a process level and operation level in a operation model, and a method of measuring gap-times in each level while the simulation progresses. It helps a site manager to decide how many segmentation in a construction block is suitable for eliminating unproductive time-delays under the constrained resources (e.g., laborer, equipment). A case study presents a network model representing a three segmented RC frame work, and result obtained from the simulation experiment.

  • PDF

RC 골조의 내진 보강을 위한 예압 가새의 3-D 배치 (3-D Configuration Effects of Prestressing Cable Bracing Used for Retrofitting a RC Frame Subjected to Seismic Damage)

  • 이진호;오상균;히샴 엘간조리
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권3호
    • /
    • pp.183-191
    • /
    • 2003
  • 본 연구는 예압 가새로써 내진 보강된 RC 골조의 보강 효과를 3차원적으로 조사함이 그 목적이다. 이를 위해, 먼저 4층 규모의 RC 골조에 극한 하중을 가한 후 예압 가새를 이용하여 보강하되 보강 위치에 따라 3경우로 나누어 해석을 수행해보았다. 해석 방법으로써, 본 연구자가 앞서 행한 연구 결과에 의해 정적 붕괴 해석법이 비선형 동적 시간 이력 해석법의 대안책으로 훌륭히 쓰일 수 있음을 밝힌바 있기 때문에 정적 붕괴 해석만 적용하여 보강 전의 해석 및 보강 후의 영향에 대해서 평가하였다. 그 결과, 외주부에 설치한 가새가 커다란 비틀림 저항을 발휘했으며 예압 가새로 인해 골조에 균등한 강성 변화가 유도되어 급격한 파괴가 발생하지 않는 효과를 보였다.

Theoretical and experimental dynamic characteristics of a RC building model for construction stages

  • Turker, Temel;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • 제17권4호
    • /
    • pp.455-475
    • /
    • 2016
  • Dynamic characteristics, named as natural frequencies, damping ratios and mode shapes, affect the dynamic behavior of buildings and they vary depending on the construction stages. It is aimed to present the effects of construction stages on the dynamic characteristics of reinforced concrete (RC) buildings considering theoretical and experimental investigations. For this purpose, a three-storey RC building model with a 1/2 scale was constructed in the laboratory of Civil Engineering Department at Karadeniz Technical University. The modal testing measurements were performed by using Operational Modal Analysis (OMA) method for the bare frame, brick walled and coated cases of the building model. Randomly generated loads by impact hammer were used to vibrate the building model; the responses were measured by uni-axial seismic accelerometers as acceleration. The building's modal parameters at these construction stages were extracted from the processed signals using the Enhanced Frequency Domain Decomposition (EFDD) technique. Also, the finite element models of each case were developed and modal analyses were performed. It was observed from the experimental and theoretical investigations that the natural frequencies of the building model varied depending on the construction stages considerably.

Effect of sequential earthquakes on evaluation of non-linear response of 3D RC MRFs

  • Oggu, Praveen;Gopikrishna, K.
    • Earthquakes and Structures
    • /
    • 제20권3호
    • /
    • pp.279-293
    • /
    • 2021
  • Most of the existing seismic codes for RC buildings consider only a scenario earthquake for analysis, often characterized by the response spectrum at the specified location. However, any real earthquake event often involves occurrences of multiple earthquakes within a few hours or days, possessing similar or even higher energy than the first earthquake. This critically impairs the rehabilitation measures thereby resulting in the accumulation of structural damages for subsequent earthquakes after the first earthquake. Also, the existing seismic provisions account for the non-linear response of an RC building frame implicitly by specifying a constant response modification factor (R) in a linear elastic design. However, the 'R' specified does not address the changes in structural configurations of RC moment-resisting frames (RC MRFs) viz., building height, number of bays present, bay width, irregularities arising out of mass and stiffness changes, etc. resulting in changed dynamic characteristics of the structural system. Hence, there is an imperative need to assess the seismic performance under sequential earthquake ground motions, considering the adequacy of code-specified 'R' in the representation of dynamic characteristics of RC buildings. Therefore, the present research is focused on the evaluation of the non-linear response of medium-rise 3D RC MRFs with and without vertical irregularities under bi-directional sequential earthquake ground motions using non-linear dynamic analysis. It is evident from the results that collapse probability increases, and 'R' reduces significantly for various RC MRFs subjected to sequential earthquakes, pronouncing the vulnerability and inadequacy of estimation of design base shear by code-specified 'R' under sequential earthquakes.

Economics on Structural Floor Systems of Super Tall Buildings

  • 신성우;안종문;최명신;서대원;김철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.609-613
    • /
    • 2004
  • An economic analysis is one of the most dominant factors to determine the project feasibility of super tall building. In economic considerations, it is very important toadopt optimum structural floor systems because these are dependent on both the cost and the duration of construction. The economics affected by structural floor systems are more distinct athigher story. As the story increases, the construction cost of floor system. is accumulated linearly, while the cost of lateral resisting system is increased geometrically. The purpose of this study is to investigate the economical effects of super tall buildings through application of optimum structural floor systems. Three types of structural systems(RC beam-column frame, RC flat plate frame, and Steel frame) of super tall buildings having 50-stories are considered in this study and compared to RC flat plate slab with other systems. Analytical result shows that RC flat plate slab using lightweight concrete ismost effective in both the cost and the duration of construction.

  • PDF

철근콘크리트 보통모멘트 골조형식 학교건축물의 내전성능 향상 방안 연구 (A Study on the Methods of Enhancing the Seismic Performance for Reinforced Concrete School Buildings - Ordinary Moment Frame)

  • 김현진;이상현
    • 한국안전학회지
    • /
    • 제24권4호
    • /
    • pp.74-81
    • /
    • 2009
  • In this study, the seismic performance of RC school buildings which were not designed according to earthquake-resistance design code were evaluated by using response spectrum and push-over analyses. The torsional amplification effect due to plan irregularity is considered and then the efficiency of seismic retrofitting methods such as RC shear wall, steel frame, RC frame and PC wing wall was investigated. The analysis result indicate that the inter-story drift concentrated in the first floor and most plastic hinge forms at the column of the first story. Among the retrofitting methods, the PC wing wall has the highest seismic performance in strength and story drift aspect. Especially, it can make building ductile behavior due to the concentrated inter-story drift at the first column hinge is distributed overall stories. The axial force, shear force and moment magnitude of existing elements significantly decreased after retrofitting. However, the axial and shear force of the elements connected to the additional retrofitting elements increased, and especially the boundary columns at the end of the retrofitting shear wall should be reinforced for assuring the enhancement of seismic performance.