• Title/Summary/Keyword: RC building

Search Result 711, Processing Time 0.034 seconds

A Study of Establishing the Plan of Lodging for the Workers of Gaesung Industrial Complex (개성공단 근로자 기숙사 건립 계획 연구)

  • Choi, Sang-Hee;Kim, Doo-Hwan;Kim, Sang-Yeon;Choi, Eun-Hee
    • Land and Housing Review
    • /
    • v.6 no.2
    • /
    • pp.67-77
    • /
    • 2015
  • Now that it is the current situation that the smooth supply and demand are necessary for 2nd phase of beginning construction and stable development of Gaesung Industrial Complex, this study was willing to offer the planning criteria and model to establish the lodging for the workers in Gaesung Industrial Complex based on the agreement that both South and North Korea agreed in 2007. Regarding the plan, its standard and the alternative were reviewed considering welfare of workers, economic efficiency, technical validity, possibility of agreement and long-term development. The exclusive area per capita was calculated through Labor Standards Act of Korea and status survey of lodging for the workers provided to border line area between China and North Korea and the economic alternative based on one room for 6 persons with the public restroom was compared with that of development type based on one room for 4 persons with indoor restroom. Especially regarding the proposed site, the area with the optimized position was set by considering gradient, accessibility and convenience of development out of the area of Dongchang-ri where was agreed already and the priority of the proposed site that can keep the existing building site and provide was offered. The necessary period for whole construction was set as approximately 36 months. Regarding construction method, RC Rahmen method was selected as the optimized alternative considering the workmanship of manpower of North Korea and conditions of supply and demand of materials and cluster-type vehicle allocation plan based on 4~6 units considering the efficiency of supplying service facilities and convenient facilities along the simultaneous accommodation of 15,000 people was offered. It was analyzed that total business expenses of approximately 80~100 billion Korean Won would required though there were the difference for each alternative in the charged rental way that the development business owner develops by lending the inter-Korea Cooperation Fund and withdraws the rent by the benefit principle. The possibility of withdrawing the rent was analyzed assuming that the period of withdrawing the investment is 30 years. Especially for the operation management after moving, the establishment of the committee of operating the lodging for the workers of Gaesung Industrial Complex (tentative name) was offered with the dualized governance that the constructor takes charge of operational management, collecting fees and management of infrastructure and human resource management is delegated to North Korea.

A Study on the Shear Behavior of Recycled Aggregate Reinforced Concrete Beams without Stirrups (전단보강이 없는 순환골재 철근콘크리트 보의 전단거동에 관한 연구)

  • Lee, Jung-Hoon;Kim, Woo-Suk;Baek, Seung-Min;Kang, Thomas H.K.;Kwak, Yoon-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.389-400
    • /
    • 2013
  • Little investigations have been carried out to study the shear behaviors of RC beams with recycled aggregates. So, this experiment investigates the shear performance and suggests the possible application of Recycled Concrete Aggregate (RCA) for building structures. In general, shear strength of reinforced concrete beam without stirrups is dependent on the compressive strength of concrete, the longitudinal steel ratio, and the shear span-to-depth ratio. In this study, total 28 recycled aggregate concrete beams without shear reinforcement were tested by two-point load and all beams were singly reinforced. The variables studied in this investigation are shear span-to-depth ratios (a/d=2, 3 and 4), RCA replacement ratios (0, 15, 30 and 50%) and longitudinal steel ratios (0.80, 1.27 and 1.84%). The designed concrete compressive strength with a 30 MPa is used. This research will play an important role toward the establishment of the structural design standard for RCA concrete.

Behaviour of One-Way Concrete Slabs Reinforced with Fiber Reinforced Polymer (FRP) Bars (FRP 보강근을 주근으로 사용한 일방향 콘크리트 슬래브의 거동)

  • Seo, Dae-Won;Han, Byum-Seok;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.763-771
    • /
    • 2007
  • Over the last few decades, many researches have been conducted in order to find solution to the problem of corrosion in steel reinforced concrete. As a result, methods such as the use of stainless steel bars, epoxy coatings, and concrete additives, etc., have been tried. While effective in some situations, such remedies may still be unable to completely eliminate the problems of steel corrosion. Fiber reinforced polymer (FRP) elements are appealing as reinforcement due to some material properties such as high tensile strength, low density, and noncorrosive. However, due to the generally lower modulus of elasticity of FRP in comparison with the steel and the linear behavior of FRP, certain aspects of the structural behavior of RC members reinforced with FRP may be substantially different from similar elements reinforced with steel reinforcement. This paper presents the flexural behavior of one-way concrete slabs reinforced with FRP bars. They were simply supported and tested in the laboratory under static loading conditions to investigate their crack pattern and width, deflections, strains and mode of failure. The experimental results shows that behavior of the FRP reinforced slabs was bilinearly elastic until failure. Also, the results show that the FRP overreinforced concrete beams in this study can be safe for design in terms of deformability.

Resistance to Chloride Attack of FRP Hybrid Bar After Freezing and Thawing Action (동결융해 이후의 FRP Hybrid Bar의 부식 저항성)

  • Ryu, Hwa-Sung;Park, Ki-Tae;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.59-65
    • /
    • 2018
  • RC(Reinforced Concrete) structures are exposed to various exterior conditions, and the performances of both chloride resistance and freezing/thawing action are evaluated for those exposed to corrosive environment-sea shore. Recently developed FRP Hybrid Bars which is coated with glass fiber and epoxy with core steel has an engineering advantage of higher Elasticity than FRP rod. In this work, corrosion resistance, weight loss, and bond strength are evaluated for the FRP Hybrid Bar tested through freezing/thawing action for 300cycles. The double coated FRP Hybrid Bar shows the least weight loss without defection due to freezing/thawing action. Bond strength in FRP Hybrid Bar increases to 120% of normal steel through torturity effect with Si-coating. Bond strength in normal steel shows 0.86~0.89times in 3-day corrosion acceleration and 0.35~0.38times in 5-day corrosion acceleration, however, that in FRP Hybrid Bar shows little changes in bond strength before and after freezing/thawing action.

Structural Performance of Reinforced Concrete Beams Strengthened with Sprayed Fiber Reinforced Polymers (Sprayed FRP로 보강된 철근콘크리트 보의 보강성능에 관한 연구)

  • Lee, Kang-Seok;Son, Young-Seon;Lee, Moon-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.421-431
    • /
    • 2007
  • The main purpose of this study is to develop a sprayed FRP repair and strengthening method, which is a new technique for strengthening the existing concrete structures by mixing one of the carbon or glass chopped fibers and one of the epoxy or vinyl ester resins with high-speed compressed air in open air and randomly spraying the mixture onto the concrete surface. At present, the sprayed FRP repair and strengthening method using the epoxy resin has not been fully discussed. In order to investigate the material property of the sprayed FRP, this study carried out tensile tests of the material specimens, which were changed with the combinations of various variables including the length of chopped fiber and the mixture ratio of chopped fiber and resin. These variables were set to have the equal material strength, compared with that of one layer of the FRP sheet. As a result, the optimal length of glass and carbon chopped fibers was fumed out to be 38 mm, and the optimal mixture ratio between chopped fiber and resin was also turned out to be 1 : 2 from each variable. And also, the thickness of the sprayed FRP to have the equal strength to one layer of the FRP sheet was finally calculated. In is study, a series of experiments were carried out to evaluate the strengthening effects of flexural beams, shear beams and damaged beams strengthened with the sprayed FRP method, respectively. The results revealed that the strengthening effects of the flexural and shear specimens were reasonably similar to those of the FRP sheet, and the developed Sprayed FRP technique is able to be used as a strengthening scheme of existing RC building.

Seismic Performance of Special Shear Wall Structural System with Effectively Reduced Reinforcement Detail (완화된 단부 배근상세를 갖는 특수전단벽 구조시스템의 내진성능평가)

  • Chun, Young-Soo;Lee, Ki-Hak;Lee, Hyo-Won;Park, Young-Eun;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.271-281
    • /
    • 2013
  • The current seismic design code prescribes that a structural wall should be designed as a special shear wall when the building height is more than 60 m and its seismic design category is classified as D. However, the use of a special shear wall has a negative effect on constructability and economic efficiency. In the present study, the seismic performance of a special shear wall and a special shear wall with relaxed reinforcement detail was evaluated through a cyclic reversal loading test. The specimens were constructed to measure the results of the experimental variable regarding the reinforcement details of the special boundary element. Next, the seismic performances of a special shear wall structural system and that of a special shear wall structural system with relaxed reinforcement detail was evaluated by methods proposed in the FEMA P695. The cyclic reversal loading test results of this study showed that the performance of the shear wall with relaxed reinforcement detail was almost similar to the performance of a special shear wall and has the performance which requested from standard. The results of the seismic evaluation showed that all special shear walls with relaxed reinforcement detail are satisfied with the design code and seismic performance.

Strength Characteristics of Recycled Concrete by Recycled Aggregate in Incheon Area Waste Concrete (인천지역의 콘크리트 폐기물을 재생골재로 활용한 재생콘크리트의 강도특성)

  • Jang, Jea-Young;Jin, Jung-Hoon;Cho, Gyu-Tae;Nam, Young-Kug;Jeon, Chan-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.197-208
    • /
    • 2003
  • This paper is to determine the possibility of re-using waste concrete from Incheon city area. The strength test was conducted with five aggregate compounds which was replaced a natural aggregate with recycled aggregate. After checking the physical characteristics of recycled aggregate compounds, the mix design of recycled concrete was conducted. For the relatively comparison between natural and recycled compounds, while the unit aggregate weight was changed, other conditions were fixed. The freezing and thawing test which included fly-ash and super-plastezer were performed to check the durability and workability when recycling waste concrete. In the physical characteristics of recycled aggregate, it was found that the specific gravity of recycled coarse aggregate and recycled fine aggregate satisfied the first grade of recycle specification(KS), and all compounds of recycled aggregate also satisfied the second grade of absorption specification, Especially up to the 50% substitution of recycled aggregate is equal to or a bit lower than that of convention aggregate. In comparison with conventional concrete, the recycled concrete is lower than maximum by 7% in compressive strength decreasing rate after freezing-thawing test. From now, although most of recycled concrete was used to the building lot, subgrade, asphalt admixture, through the result. It was proved that possibility of re-using recycled aggregate as the substructure of bridge, retaining wall, tunnel lining and concrete structure which is not attacked the drying shrinkage severely.

Probability-Based USD Code for Reinforced Concrete (확률이론(確率理論)에 기초(基礎)한 철근(鐵筋)콘크리트 강도설계규준(强度設計規準))

  • Cho, Hyo Nam;Chang, Dong Il;Shin, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.53-60
    • /
    • 1986
  • This study is directed to propose a probability based LRFD design code, which could possibly replace the traditional USD provisions of the current code, based on the AFOSM reliability theory. The uncertainties of resistances and load effects for each R.C. structural elements are evaluated and adopted considering our practice, and a set of rational target reliability indices are selected based on the calibration with the reliability of the current R.C. design code and by considering the desired hierarchy of safety level. Then, a set of common load factors are chosen from the results of load and resistance factors which are computed by AFOSM method using the Rackwitz-Fiessler's efficient practical algorithm which is to transform the non-normal variables into the equivalent normal variables. It may be asserted that the proposed LRFD code for the R.C. building structures may have to be incorporated into the current RC. design codes as a design provision corresponding to the USD provisions of the current R.C. design code.

  • PDF

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part I: Model test

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3068-3084
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to experimentally assess the damage and vibrations of NPP buildings subjected to aircraft crash. In present Part I, two shots of reduce-scaled model test of aircraft impacting on NPP building were carried out. Firstly, the 1:15 aircraft model (weighs 135 kg) and RC NPP model (weighs about 70 t) are designed and prepared. Then, based on the large rocket sled loading test platform, the aircraft models were accelerated to impact perpendicularly on the two sides of NPP model, i.e., containment and auxiliary buildings, with a velocity of about 170 m/s. The strain-time histories of rebars within the impact area and acceleration-time histories of each floor of NPP model are derived from the pre-arranged twenty-one strain gauges and twenty tri-axial accelerometers, and the whole impact processes were recorded by three high-speed cameras. The local penetration and perforation failure modes occurred respectively in the collision scenarios of containment and auxiliary buildings, and some suggestions for the NPP design are given. The maximum acceleration in the 1:15 scaled tests is 1785.73 g, and thus the corresponding maximum resultant acceleration in a prototype impact might be about 119 g, which poses a potential threat to the nuclear equipment. Furthermore, it was found that the nonlinear decrease of vibrations along the height was well reflected by the variations of both the maximum resultant vibrations and Cumulative Absolute Velocity (CAV). The present experimental work on the damage and dynamic responses of NPP structure under aircraft impact is firstly presented, which could provide a benchmark basis for further safety assessments of prototype NPP structure as well as inner systems and components against aircraft crash.

Drainage system for leakage treatment of cement concrete structure in underground (콘크리트 지하구조물 누수 처리를 위한 유도배수시스템)

  • Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.573-585
    • /
    • 2019
  • The objective of this study is to propose the drainage system that has been improved the workability, waterproofing and drainage performance to treat the leakage from the cement concrete structures in underground. It is improved that the pipe for conveying ground leak in the existing drainage system had the problem in workability and waterproof. The drainage systems with the improved pipe for conveying ground leak were constructed in conventional concrete lining tunnels to evaluate the workability, waterproofing and drainage. The waterproof and the drainage performance of the drainage system was evaluated by injecting 1,000 ml of red water in the back of the drainage system at 3 weeks, 6 weeks, 9 weeks, 11 weeks, 14 weeks, 17 weeks and 23 weeks. During 6 months of field performance test, the average daily temperature of the tunnel site was measured from $-12.4^{\circ}C$ to $19.7^{\circ}C$. The daily minimum temperature was $-17.2^{\circ}C$ and the daily maximum temperature was $26.7^{\circ}C$. There was no problem in waterproof and drainage performance on the pipe for conveying ground leak and the drainage system during 6 months for field performance test. It is concluded that the improved drainage system can be applied to various cement concrete underground structures where leakage occurs, and has little seasonal effect.