• Title/Summary/Keyword: RC beams and columns

Search Result 76, Processing Time 0.021 seconds

Evaluate the effect of steel, polypropylene and recycled plastic fibers on concrete properties

  • Fayed, Sabry;Mansour, Walid
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.319-332
    • /
    • 2020
  • The impacts of reinforcing concrete matrix with steel fibers, polypropylene fibers and recycled plastic fibers using different volume fractions of 0.15%, 0.5%, 1.5% and 2.5% on the compressive and tensile characteristics are experimentally investigated in the current research. Also, flexural behavior of plain concrete (PC) beams, shear performance of reinforced concrete (RC) beams and compressive characteristics of both PC and RC columns reinforced with recycled plastic fibers were studied. The experimental results showed that the steel fibers improved the splitting tensile strength of concrete higher than both the polypropylene fibers and recycled plastic fibers. The end-hooked steel fibers had a positive effect on the compressive strength of concrete while, the polypropylene fibers, the recycled plastic fibers and the rounded steel fibers had a negative impact. Compressive strength of end-hooked steel fiber specimen with volume fraction of 2.5% exhibited the highest value among all tested samples of 32.48 MPa, 21.83% higher than the control specimen. The ultimate load, stiffness, ductility and failure patterns of PC and RC beams in addition to PC and RC columns strengthened with recycled plastic fibers enhanced remarkably compared to non-strengthened elements. The maximum ultimate load and stiffness of RC column reinforced with recycled plastic fibers with 1.5% volume fraction improved by 21 and 15%, respectively compared to non-reinforced RC column.

Cost effective design of RC building frame employing unified particle swarm optimization

  • Payel Chaudhuri;Swarup K. Barman
    • Advances in Computational Design
    • /
    • v.9 no.1
    • /
    • pp.1-23
    • /
    • 2024
  • Present paper deals with the cost effective design of reinforced concrete building frame employing unified particle swarm optimization (UPSO). A building frame with G+8 stories have been adopted to demonstrate the effectiveness of the present algorithm. Effect of seismic loads and wind load have been considered as per Indian Standard (IS) 1893 (Part-I) and IS 875 (Part-III) respectively. Analysis of the frame has been carried out in STAAD Pro software.The design loads for all the beams and columns obtained from STAAD Pro have been given as input of the optimization algorithm. Next, cost optimization of all beams and columns have been carried out in MATLAB environment using UPSO, considering the safety and serviceability criteria mentioned in IS 456. Cost of formwork, concrete and reinforcement have been considered to calculate the total cost. Reinforcement of beams and columns has been calculated with consideration for curtailment and feasibility of laying the reinforcement bars during actual construction. The numerical analysis ensures the accuracy of the developed algorithm in providing the cost optimized design of RC building frame considering safety, serviceability and constructional feasibilities. Further, Monte Carlo simulations performed on the numerical results, proved the consistency and robustness of the developed algorithm. Thus, the present algorithm is capable of giving a cost effective design of RC building frame, which can be adopted directly in construction site without making any changes.

Performance of RC moment frames with fixed and hinged supports under near-fault ground motions

  • Mohammadi, Mohammad Hossain;Massumi, Ali;Meshkat-Dini, Afshin
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.89-101
    • /
    • 2017
  • The focus of this paper is the study on the seismic performance of RC buildings with two different connections at the base level under near-fault earthquakes. It is well-known that the impulsive nature of the near-fault ground motions causes severe damages to framed buildings especially at base connections. In the scope of this study, two types of 3-dimensional RC Moment Frames with Fixed Support (MFFS) and Hinged Support (MFHS) containing 5 and 10 stories are assessed under an ensemble of 11 strong ground motions by implementing nonlinear response history analysis. The most vulnerable locations of MFFS, are the connections of corner columns to foundation especially under strong earthquakes. On the other hand, using beams at the base level as well as hinged base connections in MFHS buildings, prevents damages of corner columns and achieves more ductile behavior. Results denote that the MFHS including Base Level Beams (BLB) significantly shows better behavior compared with MFFS, particularly under pulse-type records. Additionally, the first story beams and also interior components undergo more actions. Role of the BLBs are similar to fuses decreasing the flexural moments of the corner columns. The BLBs can be constructed as replaceable members which provide the reparability of structures.

An Experimental Study on Column Penetration Joint of RC Column-Steel Beam (기둥관통형 RC 기둥-철골 보 접합부에 관한 실험적 연구)

  • 김승훈;한상환;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.475-480
    • /
    • 1998
  • The composite framed structures, consisting of RC columns and steel beams more popular in korea because of their efficiency and quality. However the force transfer mechanisms between the column and beam may by very complicated since the materials of columns and beams are different. This study develops "the column penetration joint" which the web of steel beam doesn't penetrate and which could improve the strength, deformation, and energy dissipation capacities compared to existing composite joints. It is the concrete-filled square tube joint with the exterior diaphragms and the cruciform stiffening plates. This study evaluated the strength of RC column penetration to steel beam connection by analyzing the results of partial experiments, and reviewed the applicability the strength formula through the comparison of tested results of joint experiment.

  • PDF

Implementation of Bond Slip Effect in Analysis of RC Beams Using Layerd Section Method (적층단면법에 의한 철근콘크리트 보 해석에서의 부착슬립효과)

  • Kim Jin-Kook;Kwak Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.1-13
    • /
    • 2006
  • An analytical procedure to analyze reinforced concrete(RC) beams and columns subject to monotonic and cyclic loadings is proposed on the basis of the layered section method. In contrast to the classical nonlinear approaches adopting the perfect bond assumption, the bond slip effect along the reinforcing bar is quantified with the force equilibrium and compatibility condition at the post cracking stage and its contribution is implemented into the reinforcing. The advantage of the proposed analytical procedure, therefore, will be on the consideration of the bond slip effect while using the classical layered section method without additional consideration such as taking the double nodes. Through correlation studies between experimental data and analytical results, it Is verified that the proposed analytical procedure can effectively simulate the cracking behavior of RC beams and columns accompanying the stiffness degradation caused by the bond slip.

Finite element modeling of pre-damaged beam in concrete frame retrofitted with ultra high performance shotcrete

  • Xuan-Bach Luu
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.121-136
    • /
    • 2024
  • In recent times, there has been a growing need to retrofit and strengthen reinforced concrete (RC) structures that have been damaged. Numerous studies have explored various methods for strengthening RC beams. However, there is a significant dearth of research investigating the utilization of ultra-high-performance concrete (UHPC) for retrofitting damaged RC beams within a concrete frame. This study aims to develop a finite element (FE) model capable of accurately simulating the nonlinear behavior of RC beams and subsequently implementing it in an RC concrete frame. The RC frame is subjected to loading until failure at two distinct degrees, followed by retrofitting and strengthening using Ultra high performance shotcrete (UHPS) through two different methods. The results indicate the successful simulation of the load-displacement curve and crack patterns by the FE model, aligning well with experimental observations. Novel techniques for reinforcing deteriorated concrete frame structures through ABAQUS are introduced. The second strengthening method notably improves both the load-carrying capacity and initial stiffness of the load-displacement curve. By incorporating embedded rebars in the frame's columns, the beam's load-carrying capacity is enhanced by up to 31% compared to cases without embedding. These findings indicate the potential for improving the design of strengthening methods for damaged RC beams and utilizing the FE model to predict the strengthening capacity of UHPS for damaged concrete structures.

Seismic characteristics of a Π-shaped 4-story RC structure with open ground floor

  • Karabini, Martha A.;Karabinis, Athanasios J.;Karayannis, Chris G.
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.345-353
    • /
    • 2022
  • The configuration of an open ground floor (pilotis) is a common and very critical irregularity observed in multistory reinforced concrete frame structures. The characteristics and the geometrical formation of the beams of the first story proved to be a critical parameter for the overall seismic behavior of this type of Reinforced Concrete (RC) structures. In this work the combination of open ground floor (pilotis) morphology with very strong perimetrical beams at the level of the first story is studied. The observation of the seismic damages and the in situ measurements of the fundamental period of four buildings with this morphology and Π-shaped plan view are presented herein. Further analytical results of a pilotis type Π-shaped RC structure are also included in the study. From the measurements and the analytical results yield that the open ground floor configuration greatly influences the fundamental period whereas this morphology in combination with strong beams can lead to severe local shear damages in the columns of the ground floor. The structural damage was limited in the columns of the ground floor and yet based on the changes of the in situ measured fundamental period the damaged level is assessed as DI=88%. Furthermore, due to the Π-shape of the plan view the tendency of the parts of the building to move independently strongly influences the distribution of the damages over the ground floor vertical elements.

CFRP strengthening of continuous RC T-beams at hogging moment zone across the flange

  • Eldin, Mohammad Mohie;Tarabia, Ahmed M.;Hasson, Rahma F.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.783-792
    • /
    • 2017
  • Carbon Fiber Reinforced Polymer (CFRP) laminates are used widely either for repairing or strengthening of existing structures. When CFRP laminates are used for strengthening of RC continuous T-beams in the Hogging Moment Zone (HMZ); above and around the intermediate supports, it is important to study the expected positions of the laminates across the width of the beam flange. Although, it is traditional to consider CFRP laminates added above the beam web, this is not practical since walls and columns are located in such positions in general. This paper examines the effect of changing the positions of CFRP laminates used for the strengthening of the hogging moment zone across the beam flange of two-span-T-section beams. The Finite Element (FE) Package ANSYS is used to create 3-D theoretical models needed for the study. It can be concluded that changing the position of CFRP strengthening across the beam flange, in the hogging moment zone, is effective upon the overall behavior. The best locations are either above the web or at the flange just beside the web, due to the presence of walls and/or columns.

Efficient parameters to predict the nonlinear behavior of FRP retrofitted RC columns

  • Mahdavi, Navideh;Ahmadi, Hamid Reza;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.703-710
    • /
    • 2019
  • While fiber-reinforced plastic (FRP) materials have been largely used in the retrofitting of concrete buildings, its application has been limited because of some problems such as de-bonding of FRP layers from the concrete surface. This paper is the part of a wide experimental and analytical investigation about flexural retrofitting of reinforced concrete (RC) columns using FRP and mechanical fasteners (MF). A new generation of MF is proposed, which is applicable for retrofitting of RC columns. Furthermore, generally, to evaluate a retrofitted structure the nonlinear static and dynamic analyses are the most accurate methods to estimate the performance of a structure. In the nonlinear analysis of a structure, accurate modeling of structural elements is necessary for estimation the reasonable results. So for nonlinear analysis of a structure, modeling parameters for beams, columns, and beam-column joints are essential. According to the concentrated hinge method, which is one of the most popular nonlinear modeling methods, structural members shall be modeled using concentrated or distributed plastic hinge models using modeling parameters. The nonlinear models of members should be capable of representing the inelastic response of the component. On the other hand, in performance based design to make a decision about a structure or design a new one, numerical acceptance should be determined. Modeling parameters and numerical acceptance criteria are different for buildings of different types and for different performance levels. In this paper, a new method was proposed for FRP retrofitted columns to avoid FRP debonding. For this purpose, mechanical fasteners were used to achieve the composite behavior of FRP and concrete columns. The experimental results showed that the use of the new method proposed in this paper increased the flexural strength and lateral load capacity of the columns significantly, and a good composition of FRP and RC column was achieved. Moreover, the modeling parameters and acceptance criteria were presented, which were derived from the experimental study in order to use in nonlinear analysis and performance-based design approach.

Distributed crack sensors featuring unique memory capability for post-earthquake condition assessment of RC structures

  • Chen, Genda;McDaniel, Ryan;Sun, Shishuang;Pommerenke, David;Drewniak, James
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.141-158
    • /
    • 2005
  • A new design of distributed crack sensors based on the topological change of transmission line cables is presented for the condition assessment of reinforced concrete (RC) structures during and immediately after an earthquake event. This study is primarily focused on the performance of cable sensors under dynamic loading, particularly a feature that allows for some "memory" of the crack history of an RC member. This feature enables the post-earthquake condition assessment of structural members such as RC columns, in which the earthquake-induced cracks are closed immediately after an earthquake event due to gravity loads, and are visually undetectable. Factors affecting the onset of the feature were investigated experimentally with small-scale RC beams under cyclic loading. Test results indicated that both crack width and the number of loading cycles were instrumental in the onset of the memory feature of cable sensors. Practical issues related to dynamic acquisition with the sensors are discussed. The sensors were proven to be fatigue resistant from shake table tests of RC columns. The sensors continued to show useful performance after the columns can no longer support additional loads.