• Title/Summary/Keyword: RC Beams

Search Result 920, Processing Time 0.027 seconds

Flexural Behaviors of GFRP Rebars Reinforced Concrete Beam under Accelerated Aging Environments (GFRP Rebar 보강 콘크리트 보의 급속노화환경에서의 휨 거동에 관한 연구)

  • Park, Yeon-Ho;Choi, Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.137-144
    • /
    • 2013
  • The use of fiber-reinforced polymer (FRP) reinforcing bars in concrete structures has been increased as an alternative of steel reinforcement which has shown greater vulnerability to corrosion problem. However, the long-term performance of concrete members with FRP reinforcement is still questioned in comparison to the used of steel reinforcement. This study presents the results of an experimental study on the long-term behaviors of GFRP (glass fiber reinforced polymer) bar reinforced concrete beams after exposed to accelerated aging in an environmental chamber with temperature of $46^{\circ}C$ ($115^{\circ}F$) and 80% of relative humidity up to 300 days. The objectives of this research was to compare strength degradation and change of ductility between GFRP reinforced concrete beams and steel reinforcement beams after accelerated aging. Two types (wrapped and sand-coated surface) of GFRP bars and steel were reinforced. in concrete beams. Test results show that the failure modes of GFRP bar reinforced concrete beams are very similar with traditional RC beams, and the change of load-carrying capacity of steel reinforcing concrete beam is greater than that of GFRP bar reinforcing concrete beam under the accelerated aging. Test result also shows that the use of GFRP reinforcing in concrete could be introduced more brittle failure than that of steel reinforcing for practical application. The deformability factor up to compression failures indicates no significant variation before and after exposure of accelerated aging.

Strain Response Analysis of RC Beams Strengthened with Optical Fiber-embedded CFRP Sheet (광섬유 매립 CFRP 쉬트로 보강한 RC 보의 변형률 응답 분석)

  • Shim, Won-Bo;Hong, Ki-Nam;Yeon, Yeong-Mo;Jung, Kyu-San
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.363-370
    • /
    • 2020
  • This paper reports the results of an experimental study using the BOTDR sensor to detect the unbonded location of attached CFRP sheet for structural rehabilitation. A specimens with the unattached CFRP sheet were fabricated for this study, on which BOTDR sensor was attached with a nylon net. During the flexural test of the specimens, the strain of the CFRP sheet was measured using the BOTDR sensor and electric resistance gauges. From the results, it was confirmed that the strain distribution obtained through the BOTDR sensor can be effectively used to visualize and detect the unbonded position of the CFRP sheet. In addition, In addition, the strain measured by the BOTDR sensor was found to be more effective in analyzing the overall structure behavior than the electric resistance strain gauge. The development of a BOTDR sensor with a measuring longth of less than 100 mm will enable accurate detection of the local unbonded position of the CFRP sheet.

Seismic Performance of RC Column-Steel Beam Connections for Large Columns (대형기둥 적용을 위한 철근콘크리트기둥-강재보 접합부의 내진성능)

  • Park, Hong Gun;Lee, Ho Jun;Kim, Chang Soo;Hwang, Hyeon Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.231-242
    • /
    • 2016
  • Earthquake resistance of RC column-steel beam (RCS) joints with simplified details were studied. Simplified details are necessary for large columns to improve the productivity and constructability. To strengthen the beam-column joint, the effects of transverse beams, studs, and U-cross ties were used. Four 2/3 scale interior RCS connections were tested under cyclic lateral loading. The specimens generally exhibited good deformation capacity exceeding 4.0% story drift ratio after yielding of both beam and beam-column joint. Ultimately, the specimens failed by shear mechanism of the joint panel. The test strengths were compared with the predictions of existing design methods.

Strength of Reinforced Concrete Members in Pure Torsion (순수(純粹)비틀림을 받는 철근(鐵筋)콘크리트 부재(部材)의 내력(耐力))

  • Shin, Hyun Mook;Kim, Eun Kyun;Kim, Seon Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.125-133
    • /
    • 1988
  • To establish the rational design method, it is very important that predict accurately load-deformation response on reinforced concrete members. Torque-twist curves of reinforced concrete members in pure torsion were proposed recently by Collins and Hsu, etc. But, it is found that torsional strength of reinforced concrete members based on Hsu's theory is underestimated in the over-all load region except the ultimate state. In this paper, an attempt is made to present the higher-precision of torsional strength on arbitrary loading condition. For this purpose, constitutive equations are derived from which an estimate can be made of the torsional behavior of reinforced concrete members under the pure torsion. Tension stiffness of concrete in both the cracked and uncracked state have been considered. A softening effect that reduces the strength of the concrete by the diagonal cracking of concrete have been appropriately deliberated. Particularly, the experiments was done with 14 test beams to investigate the validity of theoretical analysis.

  • PDF

Retrofit Capacity of Near-Surface-Mounted RC Beam by using FRP Plate (FRP 판으로 표면매입 보강된 철근콘크리트 보의 보강성능)

  • Seo, Soo Yeon;Choi, Ki Bong;Kwon, Yeong Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.18-26
    • /
    • 2012
  • Recently, research about Near-Surface-Mounted Rertofit (NSMR) method has been being widely performed as a method for retrofit of RC structure using FRP. This method requires additional work to make grooves during retrofit but makes it possible to improve retrofit effect and reduce the attack by environment. In this paper, the retrofit effect of NSMR method, especially the method using FRP plate instead of bar is investigated through experiment. Six RC beams were made and retrofitted using by FRP plate following the planned methods; Surface-Bonding Retrofit (SBR), NSMR without debonding region and NSMR with debonding region. Flexural capacity of all specimens was evaluated by beam test with simple support condition. As a result, NSMR method with FRP plate had more improved structural capacity than SBR method. The calculation process of ACI 440-2R can be used to predict the member retrofitted by NSMR with FRP plate with consideration on the three anchorage failure mechanism.

Optimizing reinforced concrete beams under different load cases and material mechanical properties using genetic algorithms

  • Zhu, Enqiang;Najem, Rabi Muyad;Dinh-Cong, Du;Shao, Zehui;Wakil, Karzan;Ho, Lanh Si;Alyousef, Rayed;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.467-485
    • /
    • 2020
  • Genetic Algorithm (GA) is a meta-heuristic algorithm which is capable of providing robust solutions for optimal design of structural components, particularly those one needs considering many design requirements. Hence, it has been successfully used by engineers in the typology optimization of structural members. As a novel approach, this study employs GA in order for conducting a case study with high constraints on the optimum mechanical properties of reinforced concrete (RC) beams under different load combinations. Accordingly, unified optimum sections through a computer program are adopted to solve the continuous beams problem. Genetic Algorithms proved in finding the optimum resolution smoothly and flawlessly particularly in case of handling many complicated constraints like a continuous beam subjected to different loads as moments shear - torsion regarding the curbs of design codes.

The Prediction of Debonding Strength on the Reinforced Concrete Beams Strengthened with fiber Reinforced Polymer (섬유복합체로 휨보강된 RC보의 박리하중 예측에 관한 연구)

  • Hong Geon-Ho;Shin Yeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.903-910
    • /
    • 2005
  • In recent years, fiber reinforced polymer(FRP) plates have shown a great promise as an alternative to steel plates for reinforced concrete beam rehabilitation. Reinforced concrete beams strengthened with externally bonded FRP sheets to the tension face can exhibit ultimate flexural strengths several times greater than their original strength if their bond strength is enough. Debonding failure, however, may occur before the strengthened beam can achieve its enhanced flexural strength. The purpose of this paper is to investigate the debonding failure strength of FRP-strengthened reinforced concrete beams. An analytical procedure for calculating debonding load between concrete and strengthening FRP is presented. Based on the local bond stress-slip relationship in the previous studies, uniform bond stress is assumed on the effective bond length. The analytical expressions are developed from linear elastic theory and statistical analyses of experimantal results reported in the literature. The proposed method is verified by comparisons with experimental results reported in the previous researches.

Reinforcement Effect of Reinforced Concrete Beams Strengthened with Grid-type Carbon Fiber Plastics (격자형 탄소섬유로 보강한 R/C보의 보강효과)

  • Jo, Byung-Wan;Tae, Ghi-Ho;Kwon, Oh-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.377-385
    • /
    • 2003
  • Flexural characteristics of the R.C beams strengthened with newly-developed grid-type carbon fiber plastics(CFRP-GRIDS) were investigated. The tests were conducted under the four-points load to the failure to investigate the strengthening effects of CFRP-GRIDS on the beams. Results showed that initial cracks appeared in the boundary layers of fibers embedded in the newly-placed mortar concrete slowly progressed to the direction of supports and showed fracture of fiber plastics and brittle failure of concrete in compression in sequence after the yielding of steel reinforcement. Accordingly, the appropriate area of Grid-type carbon-fiber plastics in the strengthening design of deteriorated RC structures should be limited and given based on the ultimate strength design method to avoid the brittle failure of concrete structures.

Strengthening Effect of Reinforced Concrete Beams Strengthened with NSM CFRP Reinforcements and Various Reinforcement Details (다양한 보강상세를 갖는 CFRP로 표면매립 보강된 철근콘크리트 보의 보강효과)

  • Jung, Woo-Tai;Park, Young-Hwan;Park, Jong-Sup;Kim, Chul-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.781-790
    • /
    • 2011
  • This paper contains the experimental results on strengthening effect of RC beams strengthened with NSM CFRP reinforcement and various strengthening details. A total of 14 beams have been tested to analyze strengthening effects of NSMR with various reinforcement details. Variables were cross-sectional shape of CFRP reinforcements, strengthening areas, grooves the number and location etc. Test results revealed that failure modes of NSMR showed two types. One was bond failure at interface between concrete and filler and the other was CFRP rupture. Also, failure mode of specimens with two grooves occurred premature bond failure because of superposition of failure surfaces at concrete around grooves. failure mode of MI specimens considered the equivalent section have changed bond failure to CFRP rupture and CFRP efficiency has improved 83% to 100%.

Importance of a rigorous evaluation of the cracking moment in RC beams and slabs

  • Lopes, A.V.;Lopes, S.M.R.
    • Computers and Concrete
    • /
    • v.9 no.4
    • /
    • pp.275-291
    • /
    • 2012
  • The service loads are often decisive in the design of concrete structures. The evaluation of the cracking moment, $M_{cr}$, is an important issue to predict the performance of the structure, such as, the deflections of the reinforced concrete beams and slabs. To neglect the steel bars of the section is a simplification that is normally used in the computation of the cracking moment. Such simplification leads to small errors in the value of this moment (typically less than 20%). However, these small errors can conduce to significant errors when the values of deflections need to be computed from $M_{cr}$. The article shows that an error of 10% on the evaluation of $M_{cr}$ can lead to errors over 100% in the deformation values. When the deformation of the structure is the decisive design parameter, the exact computing of the cracking moment is obviously very important. Such rigorous computing might lead to important savings in the cost of the structure. With this article the authors wish to draw the attention of the technical community to this fact. A simple equation to evaluate the cracking moment, $M_{cr}$, is proposed for a rectangular cross-section. This equation leads to cracking moments higher than those obtained by neglecting the reinforcement bars and is a simple rule that can be included in Eurocode 2. To verify the accuracy of the developed model, the results of the proposed equation was compared with a rigorous computational procedure. The proposed equation corresponds to a good agreement when compared with the previous approach and, therefore, this model can be used as a practical aid for calculating an accurate value of the cracking moment.