• Title/Summary/Keyword: RBS 접합부

Search Result 26, Processing Time 0.028 seconds

Seismic Performance Evaluation of Steel Moment Resisting Frame Systems According to an Improved Design Method of RBS-B Connections (RBS-B 접합부 설계식 개선에 따른 철골모멘트골조 시스템의 내진성능평가)

  • Han, Sang-Whan;Kang, Ki-Byung;Moon, Ki-Hoon;Hwang, Seong-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.75-84
    • /
    • 2010
  • In current seismic design provisions, a reduced beam section with bolted web (RBS-B) connections is only permitted for intermediate moment frames (IMF). This study evaluated the seismic performance of steel moment resisting frame systems having RBS-B connections designed according to current seismic design provisions. For this purpose, 12 archetypal IMF systems having two different span lengths (9m, 6m) were designed considering two design load levels (SDC $C_{max}$, SDC $C_{min}$). A nonlinear analytical model that can simulate hysteretic behavior of an RBS-B connection was also developed in this study. The procedures specified in ATC 63 are used to conduct a seismic performance evaluation. Moreover, this study conducts the seismic performance evaluation of IMF systems designed according to a new design method proposed by the authors in the previous study. It was observed that several model frames designed according to current seismic design provisions did not provide satisfactory collapse margin ratios (ACMR). This study also showed that the model frames designed according to the new design procedures had a sufficient ACMR.

Finite Element Analysis for the Failure Mode of Welded Flange-Bolted Web Connection (Welded Flange-Bolted Web 강접합부의 파괴모드 추정을 위한 유한요소해석)

  • 조창빈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.33-46
    • /
    • 1999
  • In spite of 6.8 magnitude and the neighborhood of the epicenter, the steel moment frame survived after Northridge earthquake without collapse or casualties. However, following investigation revealed that there were severe damages at the column-weld interface of welded flange-bolted web (WFBW) steel moment connection, which was believed to be economic and safe from earthquakes based on experience and past tests. In this paper, this unexpected brittle fracture of the steel moment connection is explored using linear elastic fracture mechanics and post-Northridge tests. A method to predict the brittle fracture strength of the steel moment connection is proposed. Using this method, the failure mode of the WFBW connection and reduced beam section (RBS) connection are presented.

  • PDF

Effects of PZ Strength on Cyclic Seismic Performance of RBS Steel Moment Connections (RBS 철골모멘트접합부의 내진성능에 대한 패널존 강도의 영향)

  • Lee, Cheol-Ho;Kim, Jae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.149-158
    • /
    • 2006
  • The reduced beam section (RBS) steel moment connection has performed well in past numerous tests. However there still remain several design issues that should be further examined. One such issue on RBS connection performance is the panel zone strength. Although a significant amount of test data are available, a specific recommendation for a desirable range of panel zone strength versus beam strength has yet to be proposed. In this paper, the effects of panel zone strength on the cyclic performance of RBS connection are investigated based on the available test database from comprehensive independent testing programs. A criterion for a balanced panel zone strength that assures sufficient plastic rotation capacity while reducing the amount of beam buckling is proposed. Numerical studies to supplement the test results are then presented based on the validated finite element analysis. Satisfactory numerical simulation achieved in this study also indicates that numerical analysis based on quality finite element modeling can supplement or replace, at least in part, the costly full-scale cyclic testing of steel moment connections.

Seismic Design of Rib-Reinforced RBS (Reduced Beam Section) Steel Moment Connections Based on Equivalent Strut Model (등가 스트럿 모델에 의한 리브 보강 RBS 철골모멘트접합부의 내진설계)

  • Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.493-502
    • /
    • 2001
  • This paper describes a seismic design procedure for rib-reinforced RBS(Reduced Beam Section) steel moment connections. Engineers often use rib plates to enhance seismic performance of steel moment connections. thinking that the 2nd moment of inertia is increased so that the tensile stress in the beam flange groove weld is reduced However the force transfer mechanism in the rib connections is completely different from that as predicted by the classical beam theory ; a clear diagonal strut action is present in the rib. By treating the rib as a strut the writer has recently proposed an equivalent strut model that could be used as the basis of a practical design procedure. In this paper the proposed equivalent strut model is briefly presented first. A step-by-step design procedure is then recommended based on the proposed model.

  • PDF

Analytical Study for Seismic Retrofit of SMRFs Connections (철골모멘트접합부의 내진보강에 관한 해석적 연구)

  • Oh, Sang Hoon;Kim, Young Ju
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.445-454
    • /
    • 2008
  • Based on previous research on steel moment connections, experimental and analytical results showed that the deformation capacity was poor in specimens using RHS columns and with conventional weld access holes and strain concentration at the end of beam is influenced by the efficiency in transmitting the moment in the web of beam through the beam-to-column joint. This paper is focused on the retrofitting of pre-Kobe steel moment frame connections using a stiffened RBS and a welded horizontal stiffener. These retrofitting methods were considered only in beam bottom flange. A parametric study was performed using nonlinear finite element analysis to elucidate and improve the retrofit methods of connections.

Seismic Retrofit Design of RHS Column-to-H Beam Connections (RHS 기둥-H형강보 접합부의 내진보강 설계)

  • Kim, Young Ju;Oh, Sang Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.529-537
    • /
    • 2008
  • The objective of this paper is to propose retrofit design methods of theRHS column-to-H beam connections with floor slabs. Referring to previous studies on the retrofitting of moment connections, it is clear that connections retrofitted with a stiffened RBS (SR) or a lengthened horizontal stiffener (LH) has an effect on decreasing the stress/strain concentration. A new design procedure using these two retrofitting methods was thus presented. In addition, this paper addressed various design or detailing options and recommended a procedure for designing the improved retrofitting method of steel moment connections. Finally, a pilot test was conducted to verify the design procedure.

Experimental Investigation on Deformation Capacity of CFT Column to H-Steel Beam Connections (콘크리트충전 각형기둥-H형강보 접합부의 변형능력에 관한 실험적 연구)

  • Kim, Young Ju;Chae, Young Suk;Shin, Kyung Jae;Oh, Young Suk;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.113-121
    • /
    • 2004
  • A test program was conducted on full-scale steel moment connections constructed using a T-stiffener. In the T-stiffener connection, the beam-to-column connection was reinforced with the horizontal and vertical element of the T-stiffener to resist moment under severe cyclic loads. A total of five specimens were tested in this study together with a concrete-filled tubular(CFT) column(${\sqsubset}-500{\times}500{\times}12$) and a steel beam($H-506{\times}201{\times}11{\times}19$). For the specimens, the T-stiffener was combined with RBS (also known as "Dog-bone") detail or Horizontal Element Hole(HEH) detail constructed to enhance deformation capacity. The test program showed excellent seismic performance for specimens constructed with an RBS or an HEH. except the specimens had brittle failure of VE. The test results also showed that the connections all developed maximum moments at the face of the column. Such moments were at least 15% and as much as 36% larger than the plastic moment capacity of the beam. based on the actual yield stress of the beam steel.

Cycllic Seismic Testing of Full-Scale RBS (Reduced Beam Section) Steel Moment Connections (RBS 철골모멘트접합부의 내진거동평가를 위한 반복재하 실물대(實物大) 시험)

  • Lee, Cheol Ho;Jeon, Sang Woo;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.557-566
    • /
    • 2002
  • This paper summarized the results of a full-scale cyclic seismic testing on four reduced beam section (RBS) steel moment connections. Specifically, these tests addressed a bolted web versus a welded web connection and strong versus medium panel zone (PZ) strength as key test variables. Specimens with medium PZ strength were designed to promote balanced energy dissipation from both PZ and RBS regions, in order to reduce the requirement for expensive doubler plates. Both strong and medium PZ specimens with welded web connection were able to provide sufficient connection rotation capacity required of special moment-resisting frames. On the other hand, specimens with bolted web connection performed poorly due to premature brittle fracture of the beam flange at the weld access hole. Unlike the case of web-welded specimens, specimens with cheaper bolted web connection could not transfer the actual plastic moment of the original (or unreduced) beam section to the column. No fracture occurred within the beam groove welds of any connection in this testing program. If fracture within the beam flange groove weld is avoided by using quality welding procedure as in this study, the fracture issue tends to move into the beam flange base metal at the weld access hole. Supporting analytical study was also conducted in order to understand the observed base metal fracture from the engineering mechanics perspective.

Seismic Design of Reduced Beam Section (RBS) Steel Moment Connections with Bolted Web Attachment (보 웨브를 볼트 접합한 RBS 철골모멘트접합부의 내진설계)

  • Lee, Cheol-Ho;Kim, Jae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.87-96
    • /
    • 2004
  • Recent test results on reduced beam section (RBS) steel moment connections showed that specimens with a bolted web tended to perform poorly due to premature brittle fracture of the beam flange at the weld access hole. The measured strain data appeared to imply that a higher incidence of base metal fracture in bolted-web specimens is related to, at least in part, the increased demand on the beam flanges due to the web bolt slippage and the actual load transfer mechanism which is completely different from that usually assumed in connection design. In this paper, the practice of providing web bolts uniformly along the beam depth was brought into question. A new seismic design procedure, which is more consistent with the actual load path identified from the analytical and experimental studies, was proposed together with improved connection details.

A Balanced Panel Zone Strength Criterion for Reduced Beam Section Steel Moment Connections (보 플랜지 절취형 (RBS) 철골 모멘트 접합부의 균형패널존 강도)

  • Lee, Cheol Ho;Kim, Jae Hoon;Jeon, Sang Woo;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2006
  • This paper presents test results on reduced beam section (RBS)program addressed panel zone (PZ) strength as the key variables. PZ strength has been much debated issue for several decades. A desirable range of PZ strength has not yet been proposed despite the fact that a significant amount of RBS test data is available. Test results from this study and by others showed that panel zones could easily develop a plastic rotation of 0.01 radian without causing distress to the beam flange groove welds. At this deformation level, the amount of beam distortion (i.e., buckling) was about one half that developed in strong PZ specimens. A criterion for a balanced PZ strength that improves the plastic rotation capacity while reducing the amount of beam buckling is proposed.