• Title/Summary/Keyword: RBFNNs 패턴분류기

Search Result 21, Processing Time 0.024 seconds

Design of Pedestrian Detection System Based on Optimized pRBFNNs Pattern Classifier Using HOG Features and PCA (PCA와 HOG특징을 이용한 최적의 pRBFNNs 패턴분류기 기반 보행자 검출 시스템의 설계)

  • Lim, Myeoung-Ho;Park, Chan-Jun;Oh, Sung-Kwun;Kim, Jin-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1345-1346
    • /
    • 2015
  • 본 논문에서는 보행자 및 배경 이미지로부터 HOG-PCA 특징을 추출하고 다항식 기반 RBFNNs(Radial Basis Function Neural Network) 패턴분류기과 최적화 알고리즘을 이용하여 보행자를 검출하는 시스템 설계를 제안한다. 입력 영상으로부터 보행자를 검출하기 위해 전처리 과정에서 HOG(Histogram of oriented gradient) 알고리즘을 통해 특징을 추출한다. 추출된 특징은 고차원이므로 패턴분류기 분류 시 많은 연산과 처리속도가 따른다. 이를 개선하고자 PCA (Principal Components Analysis)을 사용하여 저차원으로의 차원 축소한다. 본 논문에서 제안하는 분류기는 pRBFNNs 패턴분류기의 효율적인 학습을 위해 최적화 알고리즘인 PSO(Particle Swarm Optimization)을 사용하여 구조 및 파라미터를 최적화시켜 모델의 성능을 향상시킨다. 사용된 데이터로는 보행자 검출에 널리 사용되는 INRIA2005_person data set에서 보행자와 배경 영상을 각각 1200장을 학습 데이터, 검증 데이터로 구성하여 분류기를 설계하고 테스트 이미지를 설계된 최적의 분류기를 이용하여 보행자를 검출하고 검출률을 확인한다.

  • PDF

Design of RBFNNs Pattern Classifier Realized with the Aid of Face Features Detection (얼굴 특징 검출에 의한 RBFNNs 패턴분류기의 설계)

  • Park, Chan-Jun;Kim, Sun-Hwan;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.120-126
    • /
    • 2016
  • In this study, we propose a method for effectively detecting and recognizing the face in image using RBFNNs pattern classifier and HCbCr-based skin color feature. Skin color detection is computationally rapid and is robust to pattern variation for face detection, however, the objects with similar colors can be mistakenly detected as face. Thus, in order to enhance the accuracy of the skin detection, we take into consideration the combination of the H and CbCr components jointly obtained from both HSI and YCbCr color space. Then, the exact location of the face is found from the candidate region of skin color by detecting the eyes through the Haar-like feature. Finally, the face recognition is performed by using the proposed FCM-based RBFNNs pattern classifier. We show the results as well as computer simulation experiments carried out by using the image database of Cambridge ICPR.

Design of PCA-based pRBFNNs Pattern Classifier for Digit Recognition (숫자 인식을 위한 PCA 기반 pRBFNNs 패턴 분류기 설계)

  • Lee, Seung-Cheol;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.355-360
    • /
    • 2015
  • In this paper, we propose the design of Radial Basis Function Neural Network based on PCA in order to recognize handwritten digits. The proposed pattern classifier consists of the preprocessing step of PCA and the pattern classification step of pRBFNNs. In the preprocessing step, Feature data is obtained through preprocessing step of PCA for minimizing the information loss of given data and then this data is used as input data to pRBFNNs. The hidden layer of the proposed classifier is built up by Fuzzy C-Means(FCM) clustering algorithm and the connection weights are defined as linear polynomial function. In the output layer, polynomial parameters are obtained by using Least Square Estimation (LSE). MNIST database known as one of the benchmark handwritten dataset is applied for the performance evaluation of the proposed classifier. The experimental results of the proposed system are compared with other existing classifiers.

Design of Convolutional RBFNNs Pattern Classifier for Two dimensional Face Recognition (2차원 얼굴 인식을 위한 Convolutional RBFNNs 패턴 분류기 설계)

  • Kim, Jong-Bum;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1355-1356
    • /
    • 2015
  • 본 논문에서는 Convolution기법 기반 RBFNNs 패턴 분류기를 사용한 2차원 얼굴인식 시스템을 설계한다. 제안된 방법은 특징 추출과 차원축소를 하는 컨볼루션 계층과 부분추출 계층을 교대로 연결하여 2차원 이미지를 1차원의 특징 배열로 만든다. 그 후, 만들어진 1차원의 특징 배열을 RBFNNs 패턴 분류기의 입력으로 사용하여 인식을 수행한다. RBFNNs의 조건부에는 FCM 클러스터링 알고리즘을 사용하며 연결가중치는 1차 선형식을 사용하였다. 또한 최소 자승법(LSE : Least Square Estimation)을 사용하여 다항식의 계수를 추정하였다. 제안된 모델의 성능을 평가하기 위해 CMU PIE Database를 사용한다.

  • PDF

Design of Optimized pRBFNNs-based Face Recognition Algorithm Using Two-dimensional Image and ASM Algorithm (최적 pRBFNNs 패턴분류기 기반 2차원 영상과 ASM 알고리즘을 이용한 얼굴인식 알고리즘 설계)

  • Oh, Sung-Kwun;Ma, Chang-Min;Yoo, Sung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.749-754
    • /
    • 2011
  • In this study, we propose the design of optimized pRBFNNs-based face recognition system using two-dimensional Image and ASM algorithm. usually the existing 2 dimensional face recognition methods have the effects of the scale change of the image, position variation or the backgrounds of an image. In this paper, the face region information obtained from the detected face region is used for the compensation of these defects. In this paper, we use a CCD camera to obtain a picture frame directly. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. AdaBoost algorithm is used for the detection of face image between face and non-face image area. We can butt up personal profile by extracting the both face contour and shape using ASM(Active Shape Model) and then reduce dimension of image data using PCA. The proposed pRBFNNs consists of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of RBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to real-time face image database and then demonstrated from viewpoint of the output performance and recognition rate.

Design of Face Recognition Algorithm based Optimized pRBFNNs Using Three-dimensional Scanner (최적 pRBFNNs 패턴분류기 기반 3차원 스캐너를 이용한 얼굴인식 알고리즘 설계)

  • Ma, Chang-Min;Yoo, Sung-Hoon;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.748-753
    • /
    • 2012
  • In this paper, Face recognition algorithm is designed based on optimized pRBFNNs pattern classifier using three-dimensional scanner. Generally two-dimensional image-based face recognition system enables us to extract the facial features using gray-level of images. The environmental variation parameters such as natural sunlight, artificial light and face pose lead to the deterioration of the performance of the system. In this paper, the proposed face recognition algorithm is designed by using three-dimensional scanner to overcome the drawback of two-dimensional face recognition system. First face shape is scanned using three-dimensional scanner and then the pose of scanned face is converted to front image through pose compensation process. Secondly, data with face depth is extracted using point signature method. Finally, the recognition performance is confirmed by using the optimized pRBFNNs for solving high-dimensional pattern recognition problems.

Design of pRBFNNs Pattern Classifier-based Face Recognition System Using 2-Directional 2-Dimensional PCA Algorithm ((2D)2PCA 알고리즘을 이용한 pRBFNNs 패턴분류기 기반 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Jin, Yong-Tak
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.195-201
    • /
    • 2014
  • In this study, face recognition system was designed based on polynomial Radial Basis Function Neural Networks(pRBFNNs) pattern classifier using 2-directional 2-dimensional principal component analysis algorithm. Existing one dimensional PCA leads to the reduction of dimension of image expressed by the multiplication of rows and columns. However $(2D)^2PCA$(2-Directional 2-Dimensional Principal Components Analysis) is conducted to reduce dimension to each row and column of image. and then the proposed intelligent pattern classifier evaluates performance using reduced images. The proposed pRBFNNs consist of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned with the aid of fuzzy c-means clustering. In the conclusion part of rules. the connection weight of RBFNNs is represented as the linear type of polynomial. The essential design parameters (including the number of inputs and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. Using Yale and AT&T dataset widely used in face recognition, the recognition rate is obtained and evaluated. Additionally IC&CI Lab dataset is experimented with for performance evaluation.

Design of Meteorological Radar Pattern Classifier Using Clustering-based RBFNNs : Comparative Studies and Analysis (클러스터링 기반 RBFNNs를 이용한 기상레이더 패턴분류기 설계 : 비교 연구 및 해석)

  • Choi, Woo-Yong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.536-541
    • /
    • 2014
  • Data through meteorological radar includes ground echo, sea-clutter echo, anomalous propagation echo, clear echo and so on. Each echo is a kind of non-precipitation echoes and the characteristic of individual echoes is analyzed in order to identify with non-precipitation. Meteorological radar data is analyzed through pre-processing procedure because the data is given as big data. In this study, echo pattern classifier is designed to distinguish non-precipitation echoes from precipitation echo in meteorological radar data using RBFNNs and echo judgement module. Output performance is compared and analyzed by using both HCM clustering-based RBFNNs and FCM clustering-based RBFNNs.

Design of pRBFNNs Pattern Classifiers Model Using a Synthesis of PCA & LDA Algorithm (PCA & LDA 융합 알고리즘을 이용한 pRBFNNs 패턴 분류기 설계)

  • Kim, Na-Hyun;Yoo, Sung-Hoon;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1960-1961
    • /
    • 2011
  • 얼굴 인식에서 가장 많이 사용되고 있는 PCA(Principal Component Analysis)는 고차원의 얼굴 데이터를 낮은 차원으로 표현할 수 있다는 장점이 있다. LDA(Linear Discriminant Analysis)는 서로 다른 데이터를 잘 분리할 수 있으며, 얼굴 인식에서 우수한 성능을 보인다. 본 연구에서는 서로의 장점을 결합하여 PCA와 LDA를 혼합, 적용하였다. 고차원의 얼굴데이터를 PCA로 차원 축소한 후 LDA를 이용해 더욱 효과적인 분류가 되어 얼굴 인식률을 향상시킨다. 인식 모듈로는 pRBFNN(Polynomial Based Radial Basis Function Neural Networks) 모델을 구축하여 고차원 패턴인식 문제에 대한 해결책을 제시하고자 한다. 그리고 제안된 패턴분류기는 얼굴 데이터를 사용하여 성능을 확인한다.

  • PDF

Design of Pattern Classifier for Electrical and Electronic Waste Plastic Devices Using LIBS Spectrometer (LIBS 분광기를 이용한 폐소형가전 플라스틱 패턴 분류기의 설계)

  • Park, Sang-Beom;Bae, Jong-Soo;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.477-484
    • /
    • 2016
  • Small industrial appliances such as fan, audio, electric rice cooker mostly consist of ABS, PP, PS materials. In colored plastics, it is possible to classify by near infrared(NIR) spectroscopy, while in black plastics, it is very difficult to classify black plastic because of the characteristic of black material that absorbs the light. So the RBFNNs pattern classifier is introduced for sorting electrical and electronic waste plastics through LIBS(Laser Induced Breakdown Spectroscopy) spectrometer. At the preprocessing part, PCA(Principle Component Analysis), as a kind of dimension reduction algorithms, is used to improve processing speed as well as to extract the effective data characteristics. In the condition part, FCM(Fuzzy C-Means) clustering is exploited. In the conclusion part, the coefficients of linear function of being polynomial type are used as connection weights. PSO and 5-fold cross validation are used to improve the reliability of performance as well as to enhance classification rate. The performance of the proposed classifier is described based on both optimization and no optimization.