• Title/Summary/Keyword: RBF networks

Search Result 130, Processing Time 0.049 seconds

Nonlinear Approximations Using RBF Neural Networks (RBF 신경망을 이용한 비선형 근사)

  • 박주영
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.26-35
    • /
    • 1996
  • In this paper, some fundamental problems concerning RBF(radial-basis-function) networks and approximation of functions are addressed. First, a comprehensive introduction to RBF networks is given with typical RBF networks classified into three classes. Next, sharp conditions are given under which continuous functions of a finite number of real variables can be approximated arbitrarily well by a certain class of RBF networks. Finally, a related result is given concerning the representation of functions in the form of distributed RBF networks.

  • PDF

Recognition of Unconstrained Handwritten Digits Using Raised Cosine RBF Neural Networks (Raised Cosine RBF 신경망을 이용한 무제약 필기체 숫자 인식)

  • 박준근;김상희;박원우
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.48-53
    • /
    • 2002
  • In this paper, we presented a new approach to the recognition of unconstrained handwritten numerals using an improved RBF(Radial Basis Function) Neural Networks. The RBF Neural Networks used Raised Cosine as a basis function to improve discrimination and reduce processing time. The performance of Raised Cosine RBF Neural Networks classifier was evaluated using totally unconstrained handwritten numeral database of Concordia University, Montreal, Canada, and the experimental results showed the recognition rate of 98.05%.

  • PDF

Hydrological Forecasting Based on Hybrid Neural Networks in a Small Watershed (중소하천유역에서 Hybrid Neural Networks에 의한 수문학적 예측)

  • Kim, Seong-Won;Lee, Sun-Tak;Jo, Jeong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.4
    • /
    • pp.303-316
    • /
    • 2001
  • In this study, Radial Basis Function(RBF) Neural Networks Model, a kind of Hybrid Neural Networks was applied to hydrological forecasting in a small watershed. RBF Neural Networks Model has four kinds of parameters in it and consists of unsupervised and supervised training patterns. And Gaussian Kernel Function(GKF) was used among many kinds of Radial Basis Functions(RBFs). K-Means clustering algorithm was applied to optimize centers and widths which ate the parameters of GKF. The parameters of RBF Neural Networks Model such as centers, widths weights and biases were determined by the training procedures of RBF Neural Networks Model. And, with these parameters the validation procedures of RBF Neural Networks Model were carried out. RBF Neural Networks Model was applied to Wi-Stream basin which is one of the IHP Representative basins in South Korea. 10 rainfall events were selected for training and validation of RBF Neural Networks Model. The results of RBF Neural Networks Model were compared with those of Elman Neural Networks(ENN) Model. ENN Model is composed of One Step Secant BackPropagation(OSSBP) and Resilient BackPropagation(RBP) algorithms. RBF Neural Networks shows better results than ENN Model. RBF Neural Networks Model spent less time for the training of model and can be easily used by the hydrologists with little background knowledge of RBF Neural Networks Model.

  • PDF

Design of Adaptive Linearization Controller for Nonlinear System Using RBF Networks (RBF 회로망을 이용한 비선형 시스템의 적응 선형화 제어기의 설계)

  • 탁한호;김명규
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.3
    • /
    • pp.525-531
    • /
    • 2001
  • The paper demonstrates that RBF(Radial Basis Function) networks can be used effective for the identification of inverted pendulum system. With the parallel arrangement of the RBF networks controller and PD controller, some characteristics were compared through simulation performance.

  • PDF

On the Radial Basis Function Networks with the Basis Function of q-Normal Distribution

  • Eccyuya, Kotaro;Tanaka, Masaru
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.26-29
    • /
    • 2002
  • Radial Basis Function (RBF) networks is known as efficient method in classification problems and function approximation. The basis function of RBF networks is usual adopted normal distribution like the Gaussian function. The output of the Gaussian function has the maximum at the center and decrease as increase the distance from the center. For learning of neural network, the method treating the limited area of input space is sometimes more useful than the method treating the whole of input space. The q-normal distribution is the set of probability density function include the Gaussian function. In this paper, we introduce the RBF networks with the basis function of q-normal distribution and actually approximate a function using the RBF networks.

  • PDF

Design of Data-centroid Radial Basis Function Neural Network with Extended Polynomial Type and Its Optimization (데이터 중심 다항식 확장형 RBF 신경회로망의 설계 및 최적화)

  • Oh, Sung-Kwun;Kim, Young-Hoon;Park, Ho-Sung;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.639-647
    • /
    • 2011
  • In this paper, we introduce a design methodology of data-centroid Radial Basis Function neural networks with extended polynomial function. The two underlying design mechanisms of such networks involve K-means clustering method and Particle Swarm Optimization(PSO). The proposed algorithm is based on K-means clustering method for efficient processing of data and the optimization of model was carried out using PSO. In this paper, as the connection weight of RBF neural networks, we are able to use four types of polynomials such as simplified, linear, quadratic, and modified quadratic. Using K-means clustering, the center values of Gaussian function as activation function are selected. And the PSO-based RBF neural networks results in a structurally optimized structure and comes with a higher level of flexibility than the one encountered in the conventional RBF neural networks. The PSO-based design procedure being applied at each node of RBF neural networks leads to the selection of preferred parameters with specific local characteristics (such as the number of input variables, a specific set of input variables, and the distribution constant value in activation function) available within the RBF neural networks. To evaluate the performance of the proposed data-centroid RBF neural network with extended polynomial function, the model is experimented with using the nonlinear process data(2-Dimensional synthetic data and Mackey-Glass time series process data) and the Machine Learning dataset(NOx emission process data in gas turbine plant, Automobile Miles per Gallon(MPG) data, and Boston housing data). For the characteristic analysis of the given entire dataset with non-linearity as well as the efficient construction and evaluation of the dynamic network model, the partition of the given entire dataset distinguishes between two cases of Division I(training dataset and testing dataset) and Division II(training dataset, validation dataset, and testing dataset). A comparative analysis shows that the proposed RBF neural networks produces model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

Robust Digital Image Watermarking Algorithm Using RBF Neural Networks in DWT domain

  • Piao, Cheng-Ri;Guan, Qiang;Choi, Jun-Rim;Han, Seung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.143-147
    • /
    • 2007
  • This paper proposes a new watermarking scheme in which a logo watermark is embedded into the discrete wavelet transform (DWT) domain of the original image using exact radial basis function neural networks (RBF). RBF will learn the characteristics of the image, and then watermark is embedded and extracted by the trained RBF. A watermark is added to the coefficients at the low frequency band of the DWT of an image and a watermark is embedded into the DWT domain using the trained RBF. The trained RBF also used in watermark extracting process. Experimental results show that the proposed method has good imperceptibility and high robustness to common image processing attacks.

Simplified RBF Multiuser Receivers of Synchronous DS-CDMA Systems (Synchronous DS-CDMA 시스템에서의 간략화된 RBF 다중사용자 수신기)

  • 고균병;이충용;강창언;홍대식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.555-560
    • /
    • 2003
  • For synchronous direct sequence-code division multiple access (DS-CDMA) systems, the authors propose an adaptive radial basis function (RBF) receiver with suboptimal structure that reduces not only the complexity with regard to the number of centers but also the quantity of instructions required per one bit reception. The proposed receiver is constructed with parallel RBF networks. Each RBF network has the same procedure as the conventional RBF receiver. The performance of each RBF network is affected by interferences which are assigned to the other RBF networks because neither RBF network uses the full user set. To combat these interferences, the partial IC technique is employed. Monte Carlo simulations over additive white Gaussian noise (AWGN) channels confirm that the proposed receiver with its reduced complexity is able to obtain near-optimum performance. Moreover, the proposed receiver is able to properly cope with a various environment.

Development of a Simulator for RBF-Based Networks on Neuromorphic Chips (뉴로모픽 칩에서 운영되는 RBF 기반 네트워크 학습을 위한 시뮬레이터 개발)

  • Lee, Yeowool;Seo, Keyongeun;Choi, Daewoong;Ko, Jaejin;Lee, Sangyub;Lee, Jaekyu;Cho, Heyonjoong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.11
    • /
    • pp.251-262
    • /
    • 2019
  • In this paper, we propose a simulator that provides various algorithms of RBF networks on neuromorphic chips. To develop algorithms based on neuromorphic chips, the disadvantages of using simulators are that it is difficult to test various types of algorithms, although time is fast. This proposed simulator can simulate four times more types of network architecture than existing simulators, and it provides an additional a two-layer structure algorithm in particular, unlike RBF networks provided by existing simulators. This two-layer architecture algorithm is configured to be utilized for multiple input data and compared to the existing RBF for performance analysis and validation of utilization. The analysis showed that the two-layer structure algorithm was more accurate than the existing RBF networks.

Design of RBF Neural Network Controller Based on Fuzzy Control Rules (퍼지 제어규칙을 기반으로한 RBF 신경회로망 제어기 설계)

  • Choi, Jong-Soo;Kwon, Oh-Shin
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.394-396
    • /
    • 1997
  • This paper describes RBF network controller based on fuzzy control rules for intelligent control of nonlinear systems. The proposed scheme is derived from the functional equivalence between RBF networks and fuzzy inference systems. The design procedure of the proposed scheme is realized by first transforming the fuzzy control rules into the parameters of RBF networks. The optimized RBF network controller is then performed through the gradient descent learning mechanism to an error function. The proposed method is rigorously tested using a nonlinear and unstable nonlinear system. Simulation is performed to demonstrate the feasibility and effectiveness of the proposed scheme.

  • PDF