• Title/Summary/Keyword: RBF model

Search Result 122, Processing Time 0.022 seconds

Hydrological Forecasting Based on Hybrid Neural Networks in a Small Watershed (중소하천유역에서 Hybrid Neural Networks에 의한 수문학적 예측)

  • Kim, Seong-Won;Lee, Sun-Tak;Jo, Jeong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.4
    • /
    • pp.303-316
    • /
    • 2001
  • In this study, Radial Basis Function(RBF) Neural Networks Model, a kind of Hybrid Neural Networks was applied to hydrological forecasting in a small watershed. RBF Neural Networks Model has four kinds of parameters in it and consists of unsupervised and supervised training patterns. And Gaussian Kernel Function(GKF) was used among many kinds of Radial Basis Functions(RBFs). K-Means clustering algorithm was applied to optimize centers and widths which ate the parameters of GKF. The parameters of RBF Neural Networks Model such as centers, widths weights and biases were determined by the training procedures of RBF Neural Networks Model. And, with these parameters the validation procedures of RBF Neural Networks Model were carried out. RBF Neural Networks Model was applied to Wi-Stream basin which is one of the IHP Representative basins in South Korea. 10 rainfall events were selected for training and validation of RBF Neural Networks Model. The results of RBF Neural Networks Model were compared with those of Elman Neural Networks(ENN) Model. ENN Model is composed of One Step Secant BackPropagation(OSSBP) and Resilient BackPropagation(RBP) algorithms. RBF Neural Networks shows better results than ENN Model. RBF Neural Networks Model spent less time for the training of model and can be easily used by the hydrologists with little background knowledge of RBF Neural Networks Model.

  • PDF

Software Maintenance Cost Estimation using RBF Network (RBF망을 이용한 소프트웨어 유지보수 비용 추정)

  • 박주석;정기원
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.555-562
    • /
    • 2004
  • Software industry has put more emphasis on maintenance and enhancement work than on the new development. The existing effort estimation models can still be applied to maintenance projects, though modifications are needed. This paper suggests a way to estimate the size of a maintenance project from the regression analysis of ISBSG's benchmarking data. First of all, among the 3 elements(addition, modification and deletion of the program) which influences the software cost, we selected and classified 4 groups from a total of 8 which shows actual maintenance cost from ISBSG's data. Moreover, we developed statistical model and a model which uses RBF(Radial Basis Function) Network and after evaluating each functions we concluded that the RBF Network is superior to the statistical model.

The Design of Polynomial RBF Neural Network by Means of Fuzzy Inference System and Its Optimization (퍼지추론 기반 다항식 RBF 뉴럴 네트워크의 설계 및 최적화)

  • Baek, Jin-Yeol;Park, Byaung-Jun;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.399-406
    • /
    • 2009
  • In this study, Polynomial Radial Basis Function Neural Network(pRBFNN) based on Fuzzy Inference System is designed and its parameters such as learning rate, momentum coefficient, and distributed weight (width of RBF) are optimized by means of Particle Swarm Optimization. The proposed model can be expressed as three functional module that consists of condition part, conclusion part, and inference part in the viewpoint of fuzzy rule formed in 'If-then'. In the condition part of pRBFNN as a fuzzy rule, input space is partitioned by defining kernel functions (RBFs). Here, the structure of kernel functions, namely, RBF is generated from HCM clustering algorithm. We use Gaussian type and Inverse multiquadratic type as a RBF. Besides these types of RBF, Conic RBF is also proposed and used as a kernel function. Also, in order to reflect the characteristic of dataset when partitioning input space, we consider the width of RBF defined by standard deviation of dataset. In the conclusion part, the connection weights of pRBFNN are represented as a polynomial which is the extended structure of the general RBF neural network with constant as a connection weights. Finally, the output of model is decided by the fuzzy inference of the inference part of pRBFNN. In order to evaluate the proposed model, nonlinear function with 2 inputs, waster water dataset and gas furnace time series dataset are used and the results of pRBFNN are compared with some previous models. Approximation as well as generalization abilities are discussed with these results.

Fault Detection of Cutting Force in Turning Process using RBF/ART-1 (RBF/ART1을 이용한 선삭에서 절삭력을 이상신호 검출)

  • 임상만;이명재;유봉환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.15-19
    • /
    • 1994
  • The application of neural network for fault dection of cutting force in turning was introduced. This monitoring system consist of a RBF predicton model and a ART-1 pattern classifier. RBF prediction model predict a cutting force signal. Prediction error of predictor is used for a input vector of ART-1 pattern classifier. Prediction error could be successfully performed to fault signal monitoring of ART-1 pattern classifier.

  • PDF

Robust Speed Control of AC Permanent Magnet Synchronous Motor using RBF Neural Network (RBF 신경회로망을 이용한 교류 동기 모터의 강인 속도 제어)

  • 김은태;이성열
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.4
    • /
    • pp.243-250
    • /
    • 2003
  • In this paper, the speed controller of permanent-magnet synchronous motor (PMSM) using the RBF neural (NN) disturbance observer is proposed. The suggested controller is designed using the input-output feedback linearization technique for the nominal model of PMSM and incorporates the RBF NN disturbance observer to compensate for the system uncertainties. Because the RBF NN disturbance observer which estimates the variation of a system parameter and a load torque is employed, the proposed algorithm is robust against the uncertainties of the system. Finally, the computer simulation is carried out to verify the effectiveness of the proposed method.

Improving Estimative Capability of Software Development Effort using Radial Basis Function Network (RBF 망 이용 소프트웨어 개발 노력 추정 성능향상)

  • Lee, Sang-Un;Park, Yeong-Mok;Park, Jae-Hong
    • The KIPS Transactions:PartD
    • /
    • v.8D no.5
    • /
    • pp.581-586
    • /
    • 2001
  • An increasingly important facet of software development is the ability to estimated the associated coast and effort of development early in the development life cycle. In spite of the most generally sued procedures for estimation of the software development effort and cost were linear regression analysis. As a result of the software complexity and various development environments, the software effort and cost estimates that are grossly inaccurate. The application of nonlinear methods hold the greatest promise for achieving this objects. Therefore this paper presents an RBF (radial basis function) network model that is able to represent the nonlinear relation for software development effort, The research describes appropriate RBF network modeling in the context of a case study for 24 software development projects. Also, this paper compared the RBF network model with a regression analysis model. The RBF network model is the most accuracy of all.

  • PDF

A Study on Hybrid Structure of Semi-Continuous HMM and RBF for Speaker Independent Speech Recognition (화자 독립 음성 인식을 위한 반연속 HMM과 RBF의 혼합 구조에 관한 연구)

  • 문연주;전선도;강철호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.8
    • /
    • pp.94-99
    • /
    • 1999
  • It is the hybrid structure of HMM and neural network(NN) that shows high recognition rate in speech recognition algorithms. And it is a method which has majorities of statistical model and neural network model respectively. In this study, we propose a new style of the hybrid structure of semi-continuous HMM(SCHMM) and radial basis function(RBF), which re-estimates weighting coefficients probability affecting observation probability after Baum-Welch estimation. The proposed method takes account of the similarity of basis Auction of RBF's hidden layer and SCHMM's probability density functions so as to discriminate speech signals sensibly through the learned and estimated weighting coefficients of RBF. As simulation results show that the recognition rates of the hybrid structure SCHMM/RBF are higher than those of SCHMM in unlearned speakers' recognition experiment, the proposed method has been proved to be one which has more sensible property in recognition than SCHMM.

  • PDF

Nonlinear Control of Active Suspensions using RBF Network with Asymmetric Hydraulic Cylinder (비대칭형 유압 실린더를 사용한 능동 현가 시스템의 RBF 신경회로망을 이용한 제어기 설계)

  • Jang, Yu-Jin;Kim, Sang-U
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.593-600
    • /
    • 1999
  • This paper suggests a suboptimal control scheme of an active suspension system with an asymmetric hydraulic cylinder. In this paper a quarter car model including a nonlinear actuator dynamics is used. A feedback linearization technique is applied to obtain a linear model. An LQ regulator is designed with the linear model to keep robustness against sprung mass variation. The gain of the LQ regulator which depends on the damping coefficient of the damper is calculated by using an RBF neural network for real time application. The improvement achieved with our design is illustrated through comparative simulations.

  • PDF

A Study on the System Identification based on Neural Network for Modeling of 5.1. Engines (S.I. 엔진 모델링을 위한 신경회로망 기반의 시스템 식별에 관한 연구)

  • 윤마루;박승범;선우명호;이승종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.29-34
    • /
    • 2002
  • This study presents the process of the continuous-time system identification for unknown nonlinear systems. The Radial Basis Function(RBF) error filtering identification model is introduced at first. This identification scheme includes RBF network to approximate unknown function of nonlinear system which is structured by affine form. The neural network is trained by the adaptive law based on Lyapunov synthesis method. The identification scheme is applied to engine and the performance of RBF error filtering Identification model is verified by the simulation with a three-state engine model. The simulation results have revealed that the values of the estimated function show favorable agreement with the real values of the engine model. The introduced identification scheme can be effectively applied to model-based nonlinear control.