• Title/Summary/Keyword: RBF Network

Search Result 245, Processing Time 0.032 seconds

Distance Estimation Based on RSSI and RBF Neural Network for Location-Based Service (위치 서비스를 위한 RBF 신경회로망과 RSSI 기반의 거리추정)

  • Byeong-Ro Lee;Ju-Won Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.265-271
    • /
    • 2023
  • Recently, location information services are gradually expanding due to the development of information and communication technology. RSSI is widely used to extract indoor and outdoor locations. The indoor and outdoor location estimation methods using RSSI are less accurate due to the influence of radio wave paths, interference, and surrounding wireless devices. In order to improve this problem, a distance estimation method that takes into account the wireless propagation environment is necessary. Therefore, in this study, we propose a distance estimation algorithm that takes into account the radio wave environment. The proposed method estimates the distance by learning RSSI input and output considering the RBF neural network and the propagation environment. To evaluate the performance of the proposed method, the performance of estimating the location of the receiver within a range of up to 55[m] using a BLE beacon transmitter and receiver was compared with the average filter and Kalman filter. As a result, the distance estimation accuracy of the proposed method was 6.7 times higher than that of the average filter and Kalman filter. As shown in the results of this performance evaluation, if the method of this study is applied to location services, more accurate location estimation will be possible.

Structural Design of Radial Basis function Neural Network(RBFNN) Based on PSO (PSO 기반 RBFNN의 구조적 설계)

  • Seok, Jin-Wook;Kim, Young-Hoon;Oh, Sung-Kwun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.381-383
    • /
    • 2009
  • 본 논문에서는 대표적인 시스템 모델링 도구중의 하나인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)를 설계하고 모델을 최적화하기 위하여 최적화 알고리즘인 PSO(Particle Swarm Optimization) 알고리즘을 이용하였다. 즉, 모델의 최적화에 주요한 영향을 미치는 모델의 파라미터들을 PSO 알고리즘을 이용하여 동정한다. 제안된 RBF 뉴럴 네트워크는 은닉층에서의 활성함수로서 일반적으로 많이 사용되어지는 가우시안 커널함수를 사용한다. 더 나아가 모델의 최적화를 위하여 각 커널함수의 중심값은 HCM 클러스터링에 기반을 두어 중심값을 결정하고, PSO 알고리즘을 통하여 가우시안 커널함수의 분포상수, 은닉층에서의 노드 수 그리고 다수의 입력을 가질 경우 입력의 종류를 동정한다. 제안한 모델의 성능을 평가하기 위해 Mackey-Glass 시계열 공정 데이터를 적용하였으며 제안된 모델의 근사화와 일반화 능력을 분석한다.

  • PDF

Classification of PVC(Premature Ventricular Contraction) using Radial Basis Function network (Radial Basis Function 네트워크를 이용한 PVC 분류)

  • Lee, J.;Lee, K.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.439-442
    • /
    • 1997
  • In our research, we will extract diagnostic parameters by LPC method and wavelet transform. Then, we will design artificial neural network which is based on RBF that can express input features in terms of fuzzy. Because PVC(Premature Ventricular Contraction) has possibility to cause heart attack, the detection of PVC is a very significant problem. To deal with this problem, LPC method which gives different coefficients or different morphologies and wavelet transform which has superior localization nature of time-frequency, are used to extract effective parameters or classification of normal and PVC. Because RBF network can allocate an input feature to the membership degree of each category, total system will be more flexible.

  • PDF

A Study of Predictive method of Daechung Dam Inflow Using Multivariate Neural Network Model (다변량 신경망 모형을 이용한 대청댐 유입량 산정에 관한 연구)

  • Kang, Kwon-Su;Yum, Kyung-Taek;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.359-362
    • /
    • 2012
  • 수자원시스템의 설계, 계획, 운영에 있어 핵심적인 수문변수의 미래거동에 대한 보다 나은 추정치가 필요하다. 예를 들어, 수력발전, 레크리에이션 이용과 하류지역의 오염희석과 같은 다중 목적 기능을 유지하기 위하여 다목적댐을 운영할 때에, 다가오는 미래시간에 대한 계획된 유량의 예측이 요구된다. 예측의 목적은 미래에 발생할 정확한 예상치를 제공하는 것이다(Keith W. Hipel, 1994). 본 연구의 주요 목적은 금강수계인 대청댐에서 다변량 신경망 모형을 이용한 유입량 예측을 수행해 보는데 있다. 신경망 모형인 MLP, PCA, RBF모형 등을 이용하여 대청댐의 수문자료인 강우량, 유입량, 기온, 습도 등의 자료를 이용하여 최적의 모형을 탐색해 보고자 시도하였으며, 이중 New classification모형과 New Function Approximation Network모형이 타 모형보다 좋은 결과를 보여 주고 있음을 알 수 있었다.

  • PDF

A Study on the Fault Current Discrimination Using Enhanced Fuzzy C-Means Clustering (개선된 퍼지 C-Means 클러스터링을 이용한 고장전류판별에 관한 연구)

  • Jeong, Jong-Won;Lee, Joon-Tark
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2102-2107
    • /
    • 2008
  • This paper demonstrates a enhanced FCM to identify the causes of ground faults in power distribution systems. The discrimination scheme which can automatically recognize the fault causes is proposed using Fuzzy RBF networks. By using the actual fault data, it is shown that the proposed method provides satisfactory results for identifying the fault causes.

A Study on Neural Network-Based Inspection of Fruit Surface (신경망 기반 과일 표면 검사에 관한 연구)

  • Lee, Hyoung-Gu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.547-550
    • /
    • 2003
  • 본 논문은 카메라로 획득한 배의 표면과 꼭지 영상을 입력으로 하여 RBF 신경망 기반 분류기를 사용하여 양호한 배인지 아닌지를 판별하는 판별기의 설계에 대해 설명한다. 먼저 입력 영상에서 배경을 분리시킨 후 배만을 포함하는 영상을 얻고 이 영상에서 윤곽선과 같은 여러 가지 특징들을 추출한 후 미리 대량의 표면 영상과 꼭지 영상으로 훈련시킨 두 개의 RBF 신경망 기반 분류기를 사용하여 배의 상태를 판별한다. 구현되는 세부 모듈을 과일 종류에 맞게 수정한다면 제안되는 방법을 사과, 참외와 같은 다른 과일에도 적용할 수 있을 것이다.

  • PDF

An Elliptical Basis Function Network for Classification of Remote-Sensing Images

  • Luo, Jian-Cheng;Chen, Qiu-Xiao;Zheng, Jiang;Leung, Yee;Ma, Jiang-Hong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1326-1328
    • /
    • 2003
  • An elliptical basis function (EBF) network is proposed in this study for the classification of remotely sensed images. Though similar in structure, the EBF network differs from the well-known radial basis function (RBF) network by incorporating full covariance matrices and uses the expectation-maximization (EM) algorithm to estimate the basis functions. Since remotely sensed data often take on mixture -density distributions in the feature space, the proposed network not only possesses the advantage of the RBF mechanism but also utilizes the EM algorithm to compute the maximum likelihood estimates of the mean vectors and covariance matrices of a Gaussian mixture distribution in the training phase. Experimental results show that the EM-based EBF network is faster in training, more accurate, and simpler in structure.

  • PDF

Architectural Analysis of Type-2 Interval pRBF Neural Networks Using Space Search Evolutionary Algorithm (공간탐색 진화알고리즘을 이용한 Interval Type-2 pRBF 뉴럴 네트워크의 구조적 해석)

  • Oh, Sung-Kwun;Kim, Wook-Dong;Park, Ho-Sung;Lee, Young-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • In this paper, we proposed Interval Type-2 polynomial Radial Basis Function Neural Networks. In the receptive filed of hidden layer, Interval Type-2 fuzzy set is used. The characteristic of Interval Type-2 fuzzy set has Footprint Of Uncertainly(FOU), which denotes a certain level of robustness in the presence of un-known information when compared with the type-1 fuzzy set. In order to improve the performance of proposed model, we used the linear polynomial function as connection weight of network. The parameters such as center values of receptive field, constant deviation, and connection weight between hidden layer and output layer are optimized by Conjugate Gradient Method(CGM) and Space Search Evolutionary Algorithm(SSEA). The proposed model is applied to gas furnace dataset and its result are compared with those reported in the previous studies.

Anormal Behavior Detection Using RBF Neural Network (RBF 신경망을 이용한 비정상 행위의 탐지 기법)

  • Kim, H.T.;Kim, Y.H.;Lee, K.S.;Kang, J.M.;Won, Y.
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04b
    • /
    • pp.805-808
    • /
    • 2002
  • 컴퓨터 시스템 및 네트워크에 대한 침입 공격의 방법 중 이미 알려진 형태의 공격에 대해서는 상대적으로 탐지가 용이하나 사용자의 비정상행위는 방법의 다양성 때문에 탐지가 매우 어렵다. 그러나, 사용자의 정상적인 행동은 몇 가지 소수의 형태로 특정 지어질 수 있다. 본 논문에서는 상대적으로 변화가 적은 정상 행위를 신경망으로 Modeling하여 이를 비정상 행위 탐지에 적용하는 기법을 제안한다. 이를 위하여 입력 영역을 지역화 하는 특성을 갖는 RBF(Radial-Basis-Fuction) 신경망에 대한 단일 Class의 학습방법을 제안하고, 이를 이용한 비정상 행위에 대한 공격의 탐지에 대한 적용 방안을 제시한다. 비정상 행위 탐지에 대한 적용 가능성을 검증하기 위하여 사용자가 키보드 입력 유형을 학습하고 이를 이용하여 타인의 ID와 Password를 도용한 경우의 탐지에 적용하였다.

  • PDF

Development of path travel time forecasting model using wavelet transformation and RBF neural network (웨이브렛 변환과 RBF 신경망을 이용한 경로통행시간 예측모형 개발 -시내버스 노선운행시간을 중심으로-)

  • 신승원;노정현
    • Journal of Korean Society of Transportation
    • /
    • v.16 no.4
    • /
    • pp.153-166
    • /
    • 1998
  • 본 연구에서는 도시 가로망에서의 구간 통행시간을 예측하기 위하여 time-frequency 분석의 일종인 웨이브렛변환과 RBF신경망 모형을 이용한 예측모형을 개발하였다. 웨이브렛 변환을 이용한 시계열 자료 분석을 통해서 통행시간에 내재되어 있는 다양한 패턴의 특징을 추출함으로써 오전/오후의 첨두현상, 신호교차로의 현시주기 등 주기적으로 발생되는 요인들에 의해서 통행시간 시계열 자료의 패턴에 나타나는 규칙성을 분석해 내었다. 분석된 패턴정보에 대한 규명은 카오스 이론을 근간으로한 시간지연좌표를 이용하여 시계열 자료의 규칙성을 시각적으로 판별하여 예측모형 구축에 활용하도록 하였다. 또, RBF신경망을 이용하여 예측범위의 공간적/시간적 확대에 따른 모형 구축에 소요되는 시간을 최소화하도록 하였으며, 시내버스 노선의 정류장간 운행시간 예측을 통해서 기존 연구에서 제기되었던 현실세계의 단순화, 다단계 예측시 정확성 등의 문제를 해결하였다. 예측실험결과 웨이브렛 변환을 데이터의 전처리 과정에 삽입하여 링크 통행시간의 패턴정보 예측에 활용할 경우, 기존의 예측모형에 비해서 훨씬 정확한 예측이 가능한 것으로 나타났으며, RBF 신경망은 짧은 학습시간에도 불구하고 역전파 신경망보다 우수한 예측력을 갖고 있는 것으로 밝혀졌다.

  • PDF