• 제목/요약/키워드: RBF(Radial Basis Function) Network

검색결과 147건 처리시간 0.03초

방대한 기상 레이더 데이터의 원할한 처리를 위한 순환 가중최소자승법 기반 RBF 뉴럴 네트워크 설계 및 응용 (Design of RBF Neural Networks Based on Recursive Weighted Least Square Estimation for Processing Massive Meteorological Radar Data and Its Application)

  • 강전성;오성권
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.99-106
    • /
    • 2015
  • In this study, we propose Radial basis function Neural Network(RBFNN) using Recursive Weighted Least Square Estimation(RWLSE) to effectively deal with big data class meteorological radar data. In the condition part of the RBFNN, Fuzzy C-Means(FCM) clustering is used to obtain fitness values taking into account characteristics of input data, and connection weights are defined as linear polynomial function in the conclusion part. The coefficients of the polynomial function are estimated by using RWLSE in order to cope with big data. As recursive learning technique, RWLSE which is based on WLSE is carried out to efficiently process big data. This study is experimented with both widely used some Machine Learning (ML) dataset and big data obtained from meteorological radar to evaluate the performance of the proposed classifier. The meteorological radar data as big data consists of precipitation echo and non-precipitation echo, and the proposed classifier is used to efficiently classify these echoes.

Interval Type-2 RBF 신경회로망 기반 CT 기법을 이용한 강인한 얼굴인식 패턴 분류기 설계 (Design of Robust Face Recognition Pattern Classifier Using Interval Type-2 RBF Neural Networks Based on Census Transform Method)

  • 진용탁;오성권
    • 전기학회논문지
    • /
    • 제64권5호
    • /
    • pp.755-765
    • /
    • 2015
  • This paper is concerned with Interval Type-2 Radial Basis Function Neural Network classifier realized with the aid of Census Transform(CT) and (2D)2LDA methods. CT is considered to improve performance of face recognition in a variety of illumination variations. (2D)2LDA is applied to transform high dimensional image into low-dimensional image which is used as input data to the proposed pattern classifier. Receptive fields in hidden layer are formed as interval type-2 membership function. We use the coefficients of linear polynomial function as the connection weights of the proposed networks, and the coefficients and their ensuing spreads are learned through Conjugate Gradient Method(CGM). Moreover, the parameters such as fuzzification coefficient and the number of input variables are optimized by Artificial Bee Colony(ABC). In order to evaluate the performance of the proposed classifier, Yale B dataset which consists of images obtained under diverse state of illumination environment is applied. We show that the results of the proposed model have much more superb performance and robust characteristic than those reported in the previous studies.

Support vector regression과 최적화 알고리즘을 이용한 하천수위 예측모델 (River stage forecasting models using support vector regression and optimization algorithms)

  • 서영민;김성원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.606-609
    • /
    • 2015
  • 본 연구에서는 support vector regression (SVR) 및 매개변수 최적화 알고리즘을 이용한 하천수위 예측모델을 구축하고 이를 실제 유역에 적용하여 모델 효율성을 평가하였다. 여기서, SVR은 하천수위를 예측하기 위한 예측모델로서 채택되었으며, 커널함수 (Kernel function)로서는 radial basis function (RBF)을 선택하였다. 최적화 알고리즘은 SVR의 최적 매개변수 (C?, cost parameter or regularization parameter; ${\gamma}$, RBF parameter; ${\epsilon}$, insensitive loss function parameter)를 탐색하기 위하여 적용되었다. 매개변수 최적화 알고리즘으로는 grid search (GS), genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC) 알고리즘을 채택하였으며, 비교분석을 통해 최적화 알고리즘의 적용성을 평가하였다. 또한 SVR과 최적화 알고리즘을 결합한 모델 (SVR-GS, SVR-GA, SVR-PSO, SVR-ABC)은 기존에 수자원 분야에서 널리 적용되어온 신경망(Artificial neural network, ANN) 및 뉴로퍼지 (Adaptive neuro-fuzzy inference system, ANFIS) 모델과 비교하였다. 그 결과, 모델 효율성 측면에서 SVR-GS, SVR-GA, SVR-PSO 및 SVR-ABC는 ANN보다 우수한 결과를 나타내었으며, ANFIS와는 비슷한 결과를 나타내었다. 또한 SVR-GA, SVR-PSO 및 SVR-ABC는 SVR-GS보다 상대적으로 우수한 결과를 나타내었으며, 모델 효율성 측면에서 SVR-PSO 및 SVR-ABC는 가장 우수한 모델 성능을 나타내었다. 따라서 본 연구에서 적용한 매개변수 최적화 알고리즘은 SVR의 매개변수를 최적화하는데 효과적임을 확인할 수 있었다. SVR과 최적화 알고리즘을 이용한 하천수위 예측모델은 기존의 ANN 및 ANFIS 모델과 더불어 하천수위 예측을 위한 효과적인 도구로 사용될 수 있을 것으로 판단된다.

  • PDF

영상합성을 통한 KOMPSAT-1 EOC의 분류정확도 및 환경정보 추출능력 향상 (Enhancement of Classification Accuracy and Environmental Information Extraction Ability for KOMPSAT-1 EOC using Image Fusion)

  • 하성룡;박대희;박상영
    • 한국지리정보학회지
    • /
    • 제5권2호
    • /
    • pp.16-24
    • /
    • 2002
  • 원격탐사 응용분야 중 토지피복 분류를 통한 지구환경의 원격탐지기법은 환경 관리, 도시계획 및 지리정보시스템의 응용분야에 광범위하게 사용되고 있는 접근방식이다. 본 연구는 다목적 실용위성(Korea Multi-Purpose Satellite : KOMPSAT)의 전자광학카메라(electro-optical camera : EOC)를 통해 취득한 영상의 토지피복 정보를 추출하는 방안을 제시하였다. 사용영상은 다중 분광정보를 보유하고 있는 공간해상도 30m의 Landsat TM과 6.6m의 공간해상도와 단일밴드로 구성되어 있는 KOMPSAT EOC영상이며, 연구 대상지역은 청주시 미호천 수계이다. 영상합성은 IHS(intensity hue saturation), HPF(high pass filtering), CN(color normalization), 그리고 Wavelet 변환방식을 적용하여 결과를 비교하였다. 합성된 영상은 RBF-NN(radial basis function neural network)과 ANN(artificial neural network)법을 이용하여 피복분류를 실시하였으며, 이상의 과정을 통해 최적 결과를 도출하는 영상합성 및 분류기법을 제시하였다.

  • PDF

고조파를 고려한 방사기저함수 네트워크 기반의 부하모델링 기법 (Load Modeling Method Based on Radial Basis Function Networks Considering of Hormonic components)

  • 지평식;이대종;이종필;임재윤
    • 조명전기설비학회논문지
    • /
    • 제22권4호
    • /
    • pp.46-53
    • /
    • 2008
  • 본 연구에서는 고조파를 고려한 방사기저함수 네트워크 기반의 부하모델링 기법을 개발하였다. 개발된 부하모델은 입력정보로서 기본 주파수와 기본 전압 외에 고조파 성분도 고려하여 전압 및 주파수뿐만 아니라 고조파의 영향에 대해서도 효과적으로 부하를 추정할 수 있도록 구성하였다. 부하모델링을 위해 적용된 방사기저함수 네트워크는 기존에 널리 사용되는 다층 신경망에 비해 구조가 간단하고 수렴속도가 빠른 장점을 지니고 있다. 개발된 부하모델링 기법은 기존에 널리 사용되는 다항식과 다층 신경회로망 및 고조파 성분을 고려하지 않은 방사기저함수 네트워크를 이용한 부하모델 기법과 비교함으로써 제안방법의 타당성을 검증하였다.

러프 집합이론을 이용한 뉴로-퍼지 모델의 최적화 (A Neuro-Fuzzy Model Optimization Using Rough Set Theory)

  • 연정흠;서재용;김용택;조현찬;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제10권3호
    • /
    • pp.188-193
    • /
    • 2000
  • 본 논문에서는 플랜트를 위한 규칙수가 줄어든 뉴로-퍼지 모델을 얻기 위한 접근을 제안한다. 뉴로-퍼지 네트워크는 가우시안 소속함수를 가진 RBF(Radial Basis Function) 네트워크들로 구성되고 오차 역전파 학습 알고리듬에 의해 학습된다. 러프 집합 이론에서 의존도는 규칙들으 줄이는데 사용된다. 모델에서 각 규칙이 조건 소속함수 값과 플랜트의 출력 값 사이의 의온도는 플랜트를 동정하기 위하여 규칙이 얼마나 많은 공헌을 하는가를 알 수 있도록 한다. 줄어든 모델은 원래의 것으로써 동일한 성능을 유지하는 동안 선택 알고리듬은 복잡성과 구조의 잉여성을 최소화할 수 있다.

  • PDF

RBF 뉴럴 네트워크 기반 정적 상황 인지에 관한 연구: PSO 및 DE 비교 해석 (A Study on RBFNN-Based Static Situation Awareness : A Comparative Analysis of PSO and DE Algorithms)

  • 나현석;김욱동;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1954-1955
    • /
    • 2011
  • 본 연구에서는 교육용으로 제작된 NXT 장비에 설치된 Light 센서, Ultrasonic센서, Sound센서를 이용하여 각 거리(10~60cm)에서 5cm 간격으로 각 센서 데이터를 취득하였다. 데이터 취득은 NI(National Instrument)에서 제공하는 LabVIEW Software를 사용하여 각 거리마다 100개의 셈플 데이터를 취득하였다. 취득한 데이터는 제안한 모델의 입력 데이터로 사용하여 실제거리와 모델 출력과의 정확도를 평가 하였다. 본 연구에서 제안한 모델은 지능형 모델 중 퍼지추론 기반의 최적 다항식 RBF 뉴럴네트워크(Radial Basis Function Neural Network; RBFNN)를 설계한다. 제안된 RBFNN은 기존 RBF 뉴럴네트워크를 기반으로 한 구조로, 퍼지추론 메커니즘의 기능적 모듈 동작 특성을 갖도록 정규화 부분을 추가하고, 은닉층과 출력층 사이의 연결가중치를 기존 상수항에서 선형식(first order)으로 확장한 형태이다. 또한 최적의 알고리즘인 PSO(Paticle Swarm Optimization)와 DE(Differential Evolution)을 이용하여 제안된 모델의 파라미터들을 동정하여 성능을 비교, 분석 하였다.

  • PDF

PSO를 이용한 FCM 기반 RBF 뉴럴네트워크의 최적화 (Optimization of FCM-based Radial Basis Function Neural Network using PSO)

  • 최정내;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1857-1858
    • /
    • 2008
  • 본 논문에서는 FCM 기반 RBF 뉴럴네트워크(FCM-RBFNN) 구조를 제안하고 PSO를 이용한 FCM-RBFNN의 구조 및 파라미터의 최적화 방법을 제시한다. 클러스터링 알고리즘은 퍼지 뉴럴 네트워크에서 멤버쉽함수의 중심점과 반경 등을 결정하는 학습에 일반적으로 사용된다. 제안된 FCM-RBFNN서는 방사기저함수로써 가우시안, 삼각형 타입 등의 정해진 형태를 사용하지 않고 데이터들 사이의 거리에 관계된 계산을 수행하는 FCM에 의해 결정된다. 기존의 RBFNN에서 후반부는 상수형태로써 방사기저함수의 선형결합으로써 표현되는 반면에 제안된 FCM-RBFNN의 후반부는 상수형, 선형, 2차식 등의 다양한 형태의 다항식으로 표현될 수 있으며 다항식의 계수는 WLSE를 이용하여 추정한다. FCM 기반 RBF 뉴럴 네트워크의 성능은 퍼지규칙의 수, 후반부 다항식의 차수 FCM의 퍼지화 계수에 의하여 결정기 때문에 FCM-RBFNN의 구조와 파라미터의 최적화가 요구된다. 본 논문에서는 PSO를 이용하여 FCM-RBFNN의 구조에 관련된 퍼지 규칙의 수, 후반부 다항식의 차수와 파라미터에 관련된 퍼지화 계수를 최적화한다. 또한 후반부 다항식의 계수는 WLSE를 사용하여 추정한다.

  • PDF

최적화된 pRBF 뉴럴 네트워크에 의한 정적 상황 인지 시스템에 관한 연구 (A Study on Static Situation Awareness System with the Aid of Optimized Polynomial Radial Basis Function Neural Networks)

  • 오성권;나현석;김욱동
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2352-2360
    • /
    • 2011
  • In this paper, we introduce a comprehensive design methodology of Radial Basis Function Neural Networks (RBFNN) that is based on mechanism of clustering and optimization algorithm. We can divide some clusters based on similarity of input dataset by using clustering algorithm. As a result, the number of clusters is equal to the number of nodes in the hidden layer. Moreover, the centers of each cluster are used into the centers of each receptive field in the hidden layer. In this study, we have applied Fuzzy-C Means(FCM) and K-Means(KM) clustering algorithm, respectively and compared between them. The weight connections of model are expanded into the type of polynomial functions such as linear and quadratic. In this reason, the output of model consists of relation between input and output. In order to get the optimal structure and better performance, Particle Swarm Optimization(PSO) is used. We can obtain optimized parameters such as both the number of clusters and the polynomial order of weights connection through structural optimization as well as the widths of receptive fields through parametric optimization. To evaluate the performance of proposed model, NXT equipment offered by National Instrument(NI) is exploited. The situation awareness system-related intelligent model was built up by the experimental dataset of distance information measured between object and diverse sensor such as sound sensor, light sensor, and ultrasonic sensor of NXT equipment.

의료영상의 질환인식 (Recognition of Disease in Medical Image)

  • 신승수;이상복;조용환
    • 한국콘텐츠학회논문지
    • /
    • 제1권1호
    • /
    • pp.8-14
    • /
    • 2001
  • 본 논문에서는 의료영상에서 특정 장기를 추출하여 질환 부위를 인식하는 알고리즘을 제안한다. 의료영상이 추출되어진 장기 부위에서 질환을 인식하기 위하여 단일 신경회로망을 이용하면 신경회로망의 학습 능력과 일반화 능력이 한정적이므로 성능개선에 많은 문제가 있다. 따라서 추출된 장기로부터 질환부위를 인식하는 것은 신경회로망을 복합적인 방법, 즉 RBF (Radial Basis Function), BP (Back Propagation)로 구성하여 단일 신경회로망의 단점을 극복하였다. 본 논문에서 제안하는 알고리즘은 입력 의료영상의 다양한 형태 변화에 적응력이 뛰어남을 실험결과로 알 수 있었다. 그리고, 전체 알고리즘의 수행시간이 장기추출 알고리즘을 포함하여 일반적으로 10초 이내에 수행됨을 실험 결과 알 수 있었다. 제안된 알고리즘은 실시간으로 의료영상의 질환부위를 인식하여 판별 자동화를 통해 원격의료에 사용 되어 질 수 있다.

  • PDF