• Title/Summary/Keyword: RAW 264.7 murine macrophage

Search Result 300, Processing Time 0.022 seconds

Effects of Substance P on the Activities of Immune Cell (면역세포 활성에 대한 Substance P의 영향)

  • Kim, Hyung-Seop;Oh, Kwi-Ok;Lim, Chong-Deuk
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.376-395
    • /
    • 1996
  • The neuropeptide substance P(SP) has been recognized to modulate immune systems, with close proximity between peptidergic sensory nerve endings and immune cells. These include the macrophage and neutrophil activation, IL-2 production in T cell, augmentation of Ig synthesis, mast cell degranulation, $PGE_2$ and collagenase secretion in synoviocytes. In this study I examined SP-induced various biological activities such as antimicrobial action, cytokine production, and mast cell degranulation in the presence or absence of other inflammatory cell activators. Antimicrobial studies showed that undifferentiated HL-60 cells were not affected by SP. However, SP significantly enhanced antimicrobial action of TPA-treated or dbcAMP-treated HL-60 cells which had been differentiated into PMN or macrophage/monocyte. I could not find synergistic relationship between SP and LPS in parallel experiments of the above. SP did not induce IL-l production from murine macrophage cell line RAW264.7 whether costimulated with LPS or not. Mast cell degranulation was occured only when stimulated with high dose ($10^{-5}M$) of SP and the degree of this activation was slightly reduced by simultaneous application of $MIP-1{\alpha}$. In addition, CGRP which is known to be a common coexisting neuropeptide with SP within specific fibers did not augment the function of SP on mast cell degranulation. These results suggest that immunoregulatory activities of SP could be mediated through direct upregulation of various functions of immune cells and also upregulation of responsiveness of immune cells to other immune activators.

  • PDF

Effect of Hepatoprotective Agents and Bile Acids on TNF-${\alpha}$ Production in Macrophage Cell Lines (간 보호제 및 담즙산류들이 마크로파지 세포주에서 TNF-${\alpha}$ 분비에 미치는 효과)

  • Cho, Jae-Youl;Park, Ji-Soo;Yoo, Eun-Sook;Baik, Kyong-Up;Park, Myung-Hwan
    • YAKHAK HOEJI
    • /
    • v.42 no.1
    • /
    • pp.82-88
    • /
    • 1998
  • The effect of hepatoprotective agents and bile acids on tumor necrosis factor-alpha, (TNF-${\alpha}$) production in murine and human macrophage cell line (RAW264.7 and U937) was inve stigated. The hepatoprotective agents including silymarin and its major component, silybin, significantly inhibited TNF-alpha production in a concentration dependent manner ($IC_50$ of silybin=67.7${\mu}g$/ml (140.3${\mu}g$M)). In differentiated U937 cells, especially, silybin showed more effective inbitory activity ($IC_50$=35.1${\mu}g$g/ml (72.7${\mu}g$M)). These results suggest that silymarin and silybin may inhibit TNF-alpha production in the process of hepatic diseases in human. However, biphenyldimethyl dicarboxylate (DDB) was not effective. In the case of bile acids, chenodeoxycholic acid (CDCA) showed a concentration dependent inhibitory effect on TNF-alpha production ($IC_50$ of CDCA= 71.5${\mu}g$g/ml (182.1${\mu}g$M)). In contrast, glycine or taurine conjugated form (G-CDCA or T-CDCA) restored to the control level or significantly increased TNF-${\alpha}$ production. And also ursodeoxycholic acid (UDCA) and its conjugated forms (G-UDCA and T-UDCA) showed a variety of patterns on TNF-${\alpha}$ production by changes of functional groups and concentration. These results also indicate that bile acids may regulate TNF-${\alpha}$ production in normal hepatic function or disease conditions.

  • PDF

Anti-inflammatory Effect of Citrus unshiu Peels Fermented with Aspergillus niger (Aspergillus niger로 발효한 감귤과피 추출물의 항염효과)

  • Lee, Sun Yi;Hyun, Ju Mi;Kim, Sang Suk;Park, Suk Man;Park, Kyung Jin;Choi, Young Hun;Kim, Sang Hun;Yu, Sun Nyoung;Ahn, Soon Cheol
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.750-756
    • /
    • 2014
  • Citrus, yield of which is the highest among fruits produced in Korea, is extensively consumed for processed food items. The amount of by-products of citrus produced from the processing within a short period after the harvest is tremendous. These by-products are mostly dumped into land or neglected because of cost involved in processing them. The aim of the present study was to explore the usefulness of the by-products as a new material by examining the anti-inflammatory activity of fermented extracts of citrus peels. The peels of 'unshu' (Citrus unshiu) was fermented with Aspergillus niger and their extracts before or after fermentation were analyzed using HPLC. The analysis showed that neohesperidin level considerably increased and the two new compounds were synthesized after fermentation. The anti-inflammatory activity of the fermented extracts was examined on RAW 264.7 murine macrophage cells stimulated with lipopolysaccharide. Fermented unshu extracts significantly enhanced the decrease of nitric oxide (NO) production, iNOS and COX-2 expression, comparing with those of unfermented extracts. Also TNF-${\alpha}$ and IL-6 production, both of which are pro-inflammatory cytokine, were more inhibited in fermented extracts. These results showed that the fermentation and promotion of the function of the by-products of citrus peels will help find a new application.

Effects of Esthetic Essential Oils on LPS-Induced Nitric Oxide Generation in Murine Marcrophage RAW 264,7 Cells (Medical Skin Care에서 사용빈도가 높은 Esthetic Essential Oils에 의한 Nitric Oxide 생성억제 효과)

  • Hong, Jin-Tae;Lee, Hwa-Jeong;Lee, Chung-Woo;Choi, Myoung-Suk;Son, Dong-Ju
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.2 s.57
    • /
    • pp.111-116
    • /
    • 2006
  • Essential oils have been used extensively in pharmacy, medicine, food, beverages, cosmetics, perfumery and aromatherapy. Although anti-bacteria, anti-virus, alleviation of fever operations and an anti-inflammatory properties have been reported, action mechanisms have not been fully discovered. In the present study, anti-inflammatory activities of thirty three essential oils have been evaluated in lipopolysaccharide (LPS)-treated macrophage RAW 264.7 cells by the evaluation of nitric oxide (NO) generation since NO generation is implicated in causal factor of inflammation. Among the tested 33 essential oil, Lemongrass oil showed the most inhibitory effect on LPS-induced NO generation in a dose dependent manner ($IC_{50}$ : $22 {\mu}g/mL$). In further study, it was found that Lemongrass oil inhibited the expression of inducible nitric oxide synthase. These results suggest that Lemongrass oil may be useful for improvements of the inflammatory disease such as pimple acne skin.

Polyacetylene Compound from Cirsium japonicum var. ussuriense Inhibited Caspase-1-mediated IL-$1{\beta}$ Expression

  • Shim, Hong;Moon, Jung Sun;Lee, Sookyeon;Yim, Dongsool;Kang, Tae Jin
    • IMMUNE NETWORK
    • /
    • v.12 no.5
    • /
    • pp.213-216
    • /
    • 2012
  • Our previous report showed that polyacetylene compound, 1-Heptadecene-11, 13-diyne-8, 9, 10-triol (PA) from the root of Cirsium japonicum var. ussuriense has anti-inflammatory activity. In this study we investigated the role of the PA as inhibitor of caspase-1, which converts prointerleukin-$1{\beta}$ (proIL-$1{\beta}$) to active IL-$1{\beta}$ and is activated by inflammasome involved in the inflammatory process. We tested the effect of PA on the production of pro-inflammatory cytokines, IL-$1{\beta}$ in murine macrophage cell line, RAW264.7. PA inhibited lipopolysaccharide (LPS)-induced IL-$1{\beta}$ production by macrophages at a dose dependent manner. PA also suppressed the activation of caspase-1. The mRNA level of ASC (apoptosis-associated spec-like protein containing a CARD), an important adaptor protein of inflammasome, was decreased in the PA treated group. Therefore our results suggest that the anti-inflammatory effect of PA is due to inhibit the caspase-1 activation.

In vitro biological evaluation of 100 selected methanol extracts from the traditional medicinal plants of Asia

  • Li, Chunmei;Wang, Myeong-Hyeon
    • Nutrition Research and Practice
    • /
    • v.8 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: In Asia, various medicinal plants have been used as the primary sources in the health care regimen for thousands of years. In recent decades, various studies have investigated the biological activity and potential medicinal value of the medicinal plants. In this study, 100 methanol extracts from 98 plant species were evaluated for their biological activities. MATERIALS/METHODS: The research properties, including 1,1-diphenyl-2-pic-rylhydrazyl (DPPH) radical scavenging activity, ${\alpha}$-glucosidase and ${\alpha}$-tyrosinase inhibitory effects, anti-inflammatory activity, and anticancer activity were evaluated for the selected extracts. RESULTS: Fifteen of the extracts scavenged more than 90% of the DPPH radical. Among the extracts, approximately 20 extracts showed a strong inhibitory effect on ${\alpha}$-glucosidase, while most had no effect on ${\alpha}$-tyrosinase. In addition, 52% of the extracts showed low toxicity to normal cells, and parts of the extracts exhibited high anti-inflammatory and anticancer activities on the murine macrophage cell (RAW 264.7) and human colon cancer cell (HT-29) lines, respectively. CONCLUSIONS: Our findings may contribute to further nutrition and pharmacological studies. Detailed investigations of the outstanding samples are currently underway.

Antithrombotic Phenolics from the Stems of Parthenocissus tricuspidata Possess Anti-inflammatory Effect

  • Nguyen, Phi-Hung;Zhao, Bing Tian;Lee, Jeong Hyung;Kim, Young Ho;Min, Byung Sun;Woo, Mi Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1763-1768
    • /
    • 2014
  • In the course of our program to search for antithrombotic and anti-inflammatory agents from plants, twelve phenolics (1-12) were isolated from the stems of Parthenocissus tricuspidata. Their structures were elucidated on the basis of spectroscopic (1D and 2D NMR, and MS) data analyses, and comparison with published data. At the concentration of $100{\mu}g/ml$, compounds 2, 4, 6 and 10 possessed potential effects on anti-blood coagulation, with inhibitory percentage of 216, 174, 148 and 225%, respectively; while aspirin used as positive control showed 181% inhibition at the same concentration. Furthermore, the anti-inflammatory activity of isolated compounds (1-12) was investigated on lipopolysaccharide (LPS)-induced murine macrophage cells (RAW264.7). Compounds 2, 4 and 6 also potential inhibited the production of nitric oxide, with $IC_{50}$ values of $11.9{\pm}0.3$, $2.9{\pm}0.2$ and $29.0{\pm}0.6{\mu}M$, respectively. Celastrol, the positive control used, gave an $IC_{50}$ value of $1.0{\pm}0.1{\mu}M$.

Antioxidative and Anti-inflammatory Activities of Carrot flower (제주 당근 꽃의 항산화 및 항염증 활성)

  • Kim, Su-Gyeong;Byun, Hoo-Dhon;Kim, Sang Cheol;Yang, Kyong-wol;Kim, Jeong Hee;Han, Jong-Heon
    • KSBB Journal
    • /
    • v.30 no.2
    • /
    • pp.77-81
    • /
    • 2015
  • The antioxidant and anti-inflammatory activities of extract and its fraction of Daucus carota var. sativa flower were studied in vitro. Extract and ethyl acetate fraction, butanol fraction of carrot flower showed radical scavenging effects on 1,1-diphenyl-2-picrylhydrazyl (DPPH). We also investigated the effect of extract and ethyl acetate fraction, butanol fraction of carrot flower on NO production in a lipopolysaccharide (LPS)-stimulated murine macrophage RAW 264.7 cells. Extract and its fraction of carrot flower significantly inhibited NO production and this inhibitory action was not due to the cytotoxicity. This study suggests that extract and ethyl acetate fraction, butanol fraction of Daucus carota var. sativa flower could contribute to the chemoprevention and therapy of oxidative stress and inflammation.

Fluorescence Quenching Causes Systematic Dye Bias in Microarray Experiments Using Cyanine Dye

  • Jeon, Ho-Sang;Choi, Sang-Dun
    • Genomics & Informatics
    • /
    • v.5 no.3
    • /
    • pp.113-117
    • /
    • 2007
  • The development of microarray technology has facilitated the understanding of gene expression profiles. Despite its convenience, the cause of dye-bias that confounds data interpretation in dual-color DNA microarray experiments is not well known. In order to economize time and money, it is necessary to identify the cause of dye bias, since designing dye-swaps to reduce the dye-specific bias tends to be very expensive. Hence, we sought to determine the reliable cause of systematic dye bias after treating murine macrophage RAW 264.7 cells with 2-keto-3-deoxyoctonate (KDO), interferon-beta $(IFN-{\beta})$, and 8-bromoadenosine (8-BR). To find the cause of systematic dye bias from the point of view of fluorescence quenching, we examined the correlation between systematic dye bias and the proportion of each nucleotide in mRNA and oligonucleotide probe sequence. Cy3-dye bias was highly correlated with the proportion of adenines. Our results support the fact that systematic dye bias is affected by fluorescence quenching of each feature. In addition, we also found that the strength of fluorescence quenching is based on not only dye-dye interactions but also dye-nucleotide interactions as well.