• 제목/요약/키워드: RASTA-PLP

검색결과 10건 처리시간 0.021초

RASTA-PLP의 음소 모델 단어 인식기 적용 (Phoneme-Model Word Recognizer on RASTA-PLP)

  • 허창원
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1997년도 영남지회 학술발표회 논문집 Acoustic Society of Korean Youngnam Chapter Symposium Proceedings
    • /
    • pp.9-12
    • /
    • 1997
  • 대부분의 음성 파?너 추정 기법은 통신 채널의 주파수 응답에 의해 쉽게 영향을 받는다. 이 논문에서 우리는 음성에서 그러한 안정상태의 스펙트럼 계수에 있어서 좀더 강인한 기법인 RASTA-PLP 방법을 적용하여 파라미터를 추출하고 그 파라미터를 연속 HMM 인식기의 입력으로 사용하여 문맥독립 음소 모델을 훈련하는 과정에서 최적의 모델을 찾게 된다. 여기서는 ETRI 445 DB에 RASTA-PLP를 적용하였을 때 가장 좋은 성능을 나타내는 재추정 횟수와 mixutre 수를 찾는 데 목표를둔다. 문맥독립음소모델은 한국어의 발성학적 근거를 토대로 하고 여기에 묵음(silence)을 추가하여 총 40개로 정의하였다. 문맥독립 음소모델은 3개의 상태를 가지는 전형적인 left-to right CHMM(Continuous Hidden Markov Model)을 이용하여 훈련한다. 그리고 훈련시간을 줄이기 위해 Viterbi beam 탐색법을 적용한다.

  • PDF

강인한 음성 인식을 위한 선형 로그 함수 기반의 MFCC 특징 표현 연구 (Representation of MFCC Feature Based on Linlog Function for Robust Speech Recognition)

  • 윤영선
    • 대한음성학회지:말소리
    • /
    • 제59호
    • /
    • pp.13-25
    • /
    • 2006
  • In previous study, the linlog(linear log) RASTA(J-RASTA) approach based on PLP was proposed to deal with both the channel effect and the additive noise. The extraction of PLP required generally more steps and computation than the extraction of widely used MFCC. Thus, in this paper, we apply the linlog function to the MFCC for investigating the possibility of simple compensation method that removes both distortion. With the experimental results, the proposed method shows the similar tendency to the linlog RASTA-PLP_ When the J value is set to le-6, the best ERR(Error Reduction Rate) of 33% is obtained. For applying the linlog function to the feature extraction process, the J value plays a very important role in compensating the corruption. Thus, the study for the adaptive J or noise dependent J estimation is further required.

  • PDF

A Method of Evaluating Korean Articulation Quality for Rehabilitation of Articulation Disorder in Children

  • Lee, Keonsoo;Nam, Yunyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권8호
    • /
    • pp.3257-3269
    • /
    • 2020
  • Articulation disorders are characterized by an inability to achieve clear pronunciation due to misuse of the articulators. In this paper, a method of detecting such disorders by comparing to the standard pronunciations is proposed. This method defines the standard pronunciations from the speeches of normal children by clustering them with three features which are the Linear Predictive Cepstral Coefficient (LPCC), the Mel-Frequency Cepstral Coefficient (MFCC), and the Relative Spectral Analysis Perceptual Linear Prediction (RASTA-PLP). By calculating the distance between the centroid of the standard pronunciation and the inputted pronunciation, disordered speech whose features locates outside the cluster is detected. 89 children (58 of normal children and 31 of children with disorders) were recruited. 35 U-TAP test words were selected and each word's standard pronunciation is made from normal children and compared to each pronunciation of children with disorders. In the experiments, the pronunciations with disorders were successfully distinguished from the standard pronunciations.

감정 변화에 강인한 음성 인식 파라메터 (Robust Speech Recognition Parameters for Emotional Variation)

  • 김원구
    • 한국지능시스템학회논문지
    • /
    • 제15권6호
    • /
    • pp.655-660
    • /
    • 2005
  • 본 논문에서는 인간의 감정 변화에 강인한 음성 인식 기술 개발을 목표로 하여 감정 변화의 영향을 적게 받는 음성 인식시스템의 특징 파라메터에 관한 연구를 수행하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 인식 시스템의 성능에 미치는 영향에 관한 연구와 감정 변화의 영향을 적게 받는 음성 인식 시스템의 특징 파라메터에 관한 연구를 수행하였다. 본 연구에서는 LPC 켑스트럼 계수, 멜 켑스트럼 계수, 루트 켑스트럼 계수, PLP 계수와 RASTA 처리를 한 멜 켑스트럼 계수와 음성의 에너지를 사용하였다 또한 음성에 포함된 편의(bias)를 제거하는 방법으로 CMS와 SBR 방법을 사용하여 그 성능을 비교하였다. 실험 결과에서 RASTA 멜 켑스트럼과 델타 켑스트럼을 사용하고 신초편의 제거 방법으로 CMS를 사용한 경우에 HMM 기반의 화자독립 단어 인식기의 오차가 $7.05\%$로 가장 우수한 성능을 나타내었다. 이러한 것은 멜 켑스트럼을 사용한 기준시스템과 비교하여 $59\%$정도 오차가 감소된 것이다.

감정 음성 인식을 위한 강인한 음성 파라메터 (Robust Speech Parameters for the Emotional Speech Recognition)

  • 이규현;김원구
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.681-686
    • /
    • 2012
  • 본 논문에서는 강인한 감정 음성 인식 시스템을 개발하기 위하여 감정의 영향을 적게 받는 음성 파라메터에 대한 연구를 수행하였다. 이러한 목적을 위하여 다양한 감정이 포함된 데이터를 사용하여 감정이 음성 인식 시스템과 음성 파라메터에 미치는 영향을 분석하였다. 본 연구에서는 멜 켑스트럼, 델타 멜 켑스트럼, RASTA 멜 켑스트럼, 루트 켑스트럼, PLP 계수와 성도 길이 정규화 방법에서 주파수 와핑된 멜 켑스트럼 계수를 사용하였다. 또한 신호 편의 제거 방법으로 CMS 방법과 SBR 방법이 사용되었다. 실험결과에서 성도정규화 방법을 사용한 RASTA 멜 켑스트럼, 델타 멜 켑스트럼 및 CMS 방법을 사용한 경우가 HMM 기반의 화자독립 단독음 인식 실험 결과에서 가장 우수한 결과를 나타내었다.

감정 변화에 강인한 음성 인식 (Robust Speech Recognition for Emotional Variation)

  • 김원구
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.431-434
    • /
    • 2007
  • 본 논문에서는 인간의 감정 변화의 영향을 적게 받는 음성 인식 시스템의 특정 파라메터에 관한 연구를 수행하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 인식 시스템의 성능에 미치는 영향과 감정 변화의 영향을 적게 받는 특정 파라메터에 관한 연구를 수행하였다. 본 연구에서는 LPC 켑스트럼 계수, 멜 켑스트럼 계수, 루트 켑스트럼 계수, PLP 계수와 RASTA 처리를 한 멜 켑스트럼 계수와 음성의 에너지를 사용하였다. 또한 음성에 포함된 편의(bias)를 제거하는 방법으로 CMS 와 SBR 방법을 사용하여 그 성능을 비교하였다. HMM 기반의 화자독립 단어 인식기를 사용한 실험 결과에서 RASTA 멜 켑스트럼과 델타 켑스트럼을 사용하고 신호편의 제거 방법으로 CMS를 사용한 경우에 가장 우수한 성능을 나타내었다. 이러한 것은 멜 켑스트럼을 사용한 기준 시스템과 비교하여 59%정도 오차가 감소된 것이다.

  • PDF

Speech Feature Selection of Normal and Autistic children using Filter and Wrapper Approach

  • Akhtar, Muhammed Ali;Ali, Syed Abbas;Siddiqui, Maria Andleeb
    • International Journal of Computer Science & Network Security
    • /
    • 제21권5호
    • /
    • pp.129-132
    • /
    • 2021
  • Two feature selection approaches are analyzed in this study. First Approach used in this paper is Filter Approach which comprises of correlation technique. It provides two reduced feature sets using positive and negative correlation. Secondly Approach used in this paper is the wrapper approach which comprises of Sequential Forward Selection technique. The reduced feature set obtained by positive correlation results comprises of Rate of Acceleration, Intensity and Formant. The reduced feature set obtained by positive correlation results comprises of Rasta PLP, Log energy, Log power and Zero Crossing Rate. Pitch, Rate of Acceleration, Log Power, MFCC, LPCC is the reduced feature set yield as a result of Sequential Forwarding Selection.

전화망에서의 음성인식을 위한 전처리 연구 (Front-End Processing for Speech Recognition in the Telephone Network)

  • 전원석;신원호;양태영;김원구;윤대희
    • 한국음향학회지
    • /
    • 제16권4호
    • /
    • pp.57-63
    • /
    • 1997
  • 본 논문에서는 다양한 전화선 채널에서 수집된 한국통신(KT)의 데이터베이스를 이용하여 인식 시스템의 성능을 향상시키기 위한 효율적인 특징벡터 및 전처리방법을 연구하였다. 먼저 잡음 및 주변 환경 변화에 강인한 갓으로 알려져 있는 특징벡터들을 이용한 인식 성능을 비교하고, 가중 켑스트랄 거리측정 방법을 이용하여 인식시스템의 성능 향상을 검증하였다. 실험 결과, KT의 인식 시스템에서 이용하는 LPC 켑스트럼의 경우에 비하여 PLP(Perceptual Linear Prediction)과 MFCC)Mel Frequency Cepstral Coefficient)등에 대하여 인식률이 향상되었다. 켑스트럼간의 거리측정에 있어서는 RPS(Root Power Sums)와 BPL(Band Pass Lifter)과 같은 가중 켑스트랄 거리측정 함수들이 인식성능 향상에 도움을 주었다. 스펙트럼 차감법(Spectral Subtraction)의 적용은 왜곡에 의한 효과가 커서 인식률이 저하되었지만, RASTA(RelAtive SpecTrAl) 처리방법, CMS(Cepstral Mean Subtraction), SBR(Signal Bias Removal)의 적용시에는 인식 성능 향상을 보였다. 특히, CMS 방법은 간편하면서도 높은 인식 성능 향상을 보였다. 마지막으로, CMS의 실시간 구현을 위한 방법들의 인식 성능을 비교하고, 인식 성능 저하를 막기 위한 개선책을 제시하였다.

  • PDF

전화선 채널이 화자확인 시스템의 성능에 미치는 영향 (The Effect of the Telephone Channel to the Performance of the Speaker Verification System)

  • 조태현;김유진;이재영;정재호
    • 한국음향학회지
    • /
    • 제18권5호
    • /
    • pp.12-20
    • /
    • 1999
  • 본 논문에서는 깨끗한 환경에서 녹음된 음성데이터와 채널환경에서 수집된 음성데이터의 화자확인 성능을 비교하였다. 채널데이터의 화자확인 성능을 향상시키기 위하여 채널환경에 강인한 특징 파라메타 및 전처리에 대해 연구하였다. 실험을 위한 음성 DB는 어구지시(text-prompted) 시스템을 고려하여 두 자리의 한국어 숫자음으로 구성하였다. 적용한 음성 특징은 LPCC(Linear Predictive Cepstral Coefficient), MFCC(Mel Frequency Cepstral Coefficient), PLP(Perceptually Linear Prediction), LSP(Line Spectrum Pair)이며, 채널 잡음을 제거하기 위한 전처리 과정으로는 음성신호에 대한 필터링을 적용하였다. 추출된 특징으로부터 채널의 영향을 제거 또는 보상하기 위해 cepstral weighting, CMS(Cepstral Mean Subtraction), RASTA(RelAtive SpecTrAl)를 적용하였다. 또한 각각의 특징 및 처리 방법에 대한 음성인식 성능을 제시함으로써 화자확인에서의 성능과 음성인식에서의 성능을 비교하였다. 적용한 음성 특징 및 처리 방법들에 대한 성능 평가를 위해 HTK(HMM Tool Kit) 2.0을 이용하였다. 남자, 여자 화자별로 임계값을 다르게 주는 방법으로 깨끗한 음성데이터와 채널 데이터에 대한 EER(Equal Error Rate)을 구하여 비교하였다. 실험결과 전처리 과정에서 대역통과 필터(150~3800Hz)를 적용하여 저대역 및 고대역의 채널 잡음을 제거하고, 이 신호로부터 MFCC를 추출하였을 때 EER 측면에서의 화자확인 성능이 가장 좋게 나타났다.

  • PDF

잡음에 강한 특징 벡터 및 스펙트럼 차감법을 이용한 음성 인식 (Speech Recognition Using Noise Robust Features and Spectral Subtraction)

  • 신원호;양태영;김원구;윤대희;서영주
    • 한국음향학회지
    • /
    • 제15권5호
    • /
    • pp.38-43
    • /
    • 1996
  • 본 논문에서는 잡음 및 주변 환경에 강인한 것으로 알려져 있는 특징 벡터들을 이용한 인식 성능을 비교하였다. 아울러 스펙트럼 차감법을 적용하여 높은 인식 성능을 얻도록 하였다. 본 논문에서는 환경 변화에 강인한 인식 성능을 얻기 위하여 SMC(Short time Modified Coherence) 분석, 루트(root) 켑스트럼 분석, LDA(Linear Discriminant Analysis), PLP(Perceptual Linear Prediction), RASTA(RelAtive SpecTrAl) 처리 등을 이용하여 인식 실험을 수행하였다. 실험을 위하여 반연속 HMM을 이용한 단독음 인식 시스템을 구현하였고 전시장 및 컴퓨터실의 잡음을 첨가하여 0, 10 및 20dB의 SNR에 대한 인식 실험을 수행하였다. 실험 결과, LPCC(Linear Prediction Cepstral Coefficient)를 이용한 경우에 비하여 SMC나 루트처리를 이용한 멜 켑스트럼(루트_멜 켑스트럼)을 이용한 경우 10dB의 SNR에서 각각 9.86%, 12.68% 향상된 가장 좋은 인식률을 얻었다. 또한 멜 켑스트럼과 루트_멜 켑스트럼을 스펙트럼 차감법과 결합하여 잡음을 제거한 경우 10dB에서 각각 16.7%, 8.4% 향상된 94.91%, 94.28%의 인식률을 얻을 수 있었다.

  • PDF