• Title/Summary/Keyword: RANs

Search Result 539, Processing Time 0.034 seconds

Investigation on hydrodynamic performance of a marine propeller in oblique flow by RANS computations

  • Yao, Jianxi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.56-69
    • /
    • 2015
  • This paper presents a numerical study on investigating on hydrodynamic characteristics of a marine propeller in oblique flow. The study is achieved by RANS simulations on an open source platform - OpenFOAM. A sliding grid approach is applied to compute the rotating motion of the propeller. Total force and moment acting on blades, as well as average force distributions in one revolution on propeller disk, are obtained for 70 cases of combinations of advance ratios and oblique angles. The computed results are compared with available experimental data and discussed.

Hybrid RANS/LES Simulation of Subsonic Cavity Flow (Hybrid RANS/LES 방법을 이용한 이음속 공동 유동의 수치적 모사)

  • Chang K. S.;Park S. O.;Choi S. K.
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.23-29
    • /
    • 2004
  • A numerical simulation of an incompressible cavity flow is conducted using the hybrid turbulence model. The model adopted is a modified type of DES using k- ε two-equation model. Cavity geometry and flow condition are based on Cattafesta's experiment. Computational results are compared with the results of Cattafesta's experiment. The simulation successfully predicts the oscillatory features and the Strouhal number of the oscillation compares very favorably with that of the dominant mode of experimental data. Vorticity contours obtained from the simulation data are consistent with the smoke visualization of the Cattafesta's experiment. The coherent structures of cavity flow are also investigated using Q criterion.

Large Amplitude Heave and Roll Simulations by the Chimera RANS Method

  • Kang, Chang-Ho
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • An oscillating body motion with extremely large amplitude has been studied using the viscous flow solver. Time simulations of oscillating ship hull in prescribed heave and roll motions are presented using RANS method with FAM approach (Chen, 1995). For viscous flows, laminar flow and turbulent flow with $textsc{k}$-$\varepsilon$ model are considered and compared. The viscous flow solver of RANS method is performed together with a Chimera type of multi-block grid system to demonstrate the advantage of accurate and efficient zonal approach. In the present study, effects of viscosity and oscillation degree are discussed using Re=1000 and Re=1000000. Large motion of oscillating body shows clear vortex propagation that is not possible for inviscid flow to present.

  • PDF

Computation of serrated trailing edge flow and noise using a hybrid zonal RANS-LES

  • Kim, Tae-Hyung;Lee, Seung-Hoon;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.414-419
    • /
    • 2012
  • The evaluation of a zonal RANS-LES approach is documented for the prediction of broadband noise generated by the flow past unmodified and serrated airfoil trailing edges at a high Reynolds number. A multi-domain decomposition is considered, where the acoustic sources are resolved with a LES sub-domain embedded in the RANS domain. A stochastic vortex method is used to generate synthetic turbulent perturbations at the RANS-LES interface. The simulations are performed with a general-purpose unstructured control-volume code FLUENT. The far-field noise is calculated using the aeroacoustic analogy of Ffowcs Williams-Hawkings. The results of the simulation are validated through the full-scaled wind turbine acoustic measurements. It is found that the present approach is adequate for predicting noise radiation of serrated trailing edge flow for low noise rotor system.

  • PDF

Turbulence Modeling considering the Effects of Submerged Vegetation Flows (침수식생 흐름의 특성을 반영한 난류모델링)

  • Song, Youngdae;Lee, Seonmin;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.127-127
    • /
    • 2017
  • 침수식생이 식재된 개수로에서 식생밀도에 따라 유동 및 난류의 특성이 변화된다. 이러한 특성은 식생에서의 유사, 영양물질, 용존 산소 등에 영향을 미치며 수중 생물의 서식에 변화를 준다. 따라서 침수식생이 식재된 개수로 흐름을 이해하는 것은 중요하게 여겨지고 있으며 많은 선행연구자들에 의해 실험 및 수치모의를 통해 활발히 연구되고 있다. 하지만 대부분의 RANS(Reynolds-Averaged Navier-Stokes)를 기반으로 한 선행연구에서는 침수식생의 흐름 특성을 반영하지 않은 모형을 이용하여 정확한 모의 결과를 도출하지 못 하였다. 이에 정확한 침수식생 흐름을 수치모의하기 위해서는 침수식생 흐름의 특성을 반영한 지배방정식을 이용해야 한다. 본 연구의 목적은 침수식생 흐름의 특성을 RANS 모형 중의 하나인 SA (Spalart-Allmaras) model에 반영하고, 식생밀도에 따른 유동 및 난류량을 실측치와 비교하는 것이다. RANS 방정식을 이용하여 난류모델링을 하였으며, 난류폐합문제를 해결하기 위해서 modified SA model을 이용하였다. 침수식생에서의 흐름을 해석하기 위해 운동량방정식에 식생항력을 추가하였다. 선행연구자의 식생수로 실험을 바탕으로 모형검증을 하였으며, 식생밀도에 따라 평균유속 및 난류구조를 확인하였다.

  • PDF

Computational evaluation of wind loads on buildings: a review

  • Dagnew, Agerneh K.;Bitsuamlak, Girma T.
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.629-660
    • /
    • 2013
  • This paper reviews the current state-of-the-art in the numerical evaluation of wind loads on buildings. Important aspects of numerical modeling including (i) turbulence modeling, (ii) inflow boundary conditions, (iii) ground surface roughness, (iv) near wall treatments, and (vi) quantification of wind loads using the techniques of computational fluid dynamics (CFD) are summarized. Relative advantages of Large Eddy Simulation (LES) over Reynolds Averaged Navier-Stokes (RANS) and hybrid RANS-LES over LES are discussed based on physical realism and ease of application for wind load evaluation. Overall LES based simulations seem suitable for wind load evaluation. A need for computational wind load validations in comparison with experimental or field data is emphasized. A comparative study among numerical and experimental wind load evaluation on buildings demonstrated generally good agreements on the mean values, but more work is imperative for accurate peak design wind load evaluations. Particularly more research is needed on transient inlet boundaries and near wall modeling related issues.

Shape Optimization of a Rotating Cooling Channel with Pin-Fins (핀휜이 부착된 회전하는 냉각유로의 최적설계)

  • Moon, Mi-Ae;Husain, Afzal;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.703-714
    • /
    • 2010
  • This paper describes the design optimization of a rotating rectangular channel with staggered arrays of pin-fins by Kriging metamodeling technique. Two non-dimensional variables, the ratio of the height to the diameter of the pin-fins and the ratio of the spacing between the pin-fins to the diameter of the pin-fins are chosen as the design variables. The objective function that is a linear combination of heat transfer and friction loss related terms with a weighting factor is selected for the optimization. To construct the Kriging model, objective function values at 20 training points generated by Latin hypercube sampling are evaluated by a three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis method with the SST turbulence model. The Kriging model predicts the objective function value that agrees well with the value calculated by the RANS analysis at the optimum point. The objective function is reduced by 11% by the optimization of the channel.

Comparison of RANS, URANS, SAS and IDDES for the prediction of train crosswind characteristics

  • Xiao-Shuai Huo;Tang-Hong Liu;Zheng-Wei Chen;Wen-Hui Li;Hong-Rui Gao;Bin Xu
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.303-314
    • /
    • 2023
  • In this study, two steady RANS turbulence models (SST k-ω and Realizable k-ε) and four unsteady turbulence models (URANS SST k-ω and Realizable k-ε, SST-SAS, and SST-IDDES) are evaluated with respect to their capacity to predict crosswind characteristics on high-speed trains (HSTs). All of the numerical simulations are compared with the wind tunnel values and LES results to ensure the accuracy of each turbulence model. Specifically, the surface pressure distributions, time-averaged aerodynamic coefficients, flow fields, and computational cost are studied to determine the suitability of different models. Results suggest that the predictions of the pressure distributions and aerodynamic forces obtained from the steady and transient RANS models are almost the same. In particular, both SAS and IDDES exhibits similar predictions with wind tunnel test and LES, therefore, the SAS model is considered an attractive alternative for IDDES or LES in the crosswind study of trains. In addition, if the computational cost needs to be significantly reduced, the RANS SST k-ω model is shown to provide relatively reasonable results for the surface pressures and aerodynamic forces. As a result, the RANS SST k-ω model might be the most appropriate option for the expensive aerodynamic optimizations of trains using machine learning (ML) techniques because it balances solution accuracy and resource consumption.

Numerical study of the flow and heat transfer characteristics in a scale model of the vessel cooling system for the HTTR

  • Tomasz Kwiatkowski;Michal Jedrzejczyk;Afaque Shams
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1310-1319
    • /
    • 2024
  • The reactor cavity cooling system (RCCS) is a passive reactor safety system commonly present in the designs of High-Temperature Gas-cooled Reactors (HTGR) that removes heat from the reactor pressure vessel by means of natural convection and radiation. It is one of the factors responsible for ensuring that the reactor does not melt down under any plausible accident scenario. For the simulation of accident scenarios, which are transient phenomena unfolding over a span of up to several days, intermediate fidelity methods and system codes must be employed to limit the models' execution time. These models can quantify radiation heat transfer well, but heat transfer caused by natural convection must be quantified with the use of correlations for the heat transfer coefficient. It is difficult to obtain reliable correlations for HTGR RCCS heat transfer coefficients experimentally due to such a system's size. They could, however, be obtained from high-fidelity steady-state simulations of RCCSs. The Rayleigh number in RCCSs is too high for using a Direct Numerical Simulation (DNS) technique; thus, a Reynolds-Averaged Navier-Stokes (RANS) approach must be employed. There are many RANS models, each performing best under different geometry and fluid flow conditions. To find the most suitable one for simulating an RCCS, the RANS models need to be validated. This work benchmarks various RANS models against three experiments performed on the HTTR RCCS Mockup by the Japanese Atomic Energy Agency (JAEA) in 1993. This facility is a 1/6 scale model of a vessel cooling system (VCS) for the High Temperature Engineering Test Reactor (HTTR), which is operated by JAEA. Multiple RANS models were evaluated on a simplified 2d-axisymmetric geometry. They were found to reproduce the experimental temperature profiles with errors of up to 22% for the lowest temperature benchmark and 15% for the higher temperature benchmarks. The results highlight that the pragmatic turbulence models need to be validated for high Rayleigh natural convection-driven flows and improved accordingly, more publicly available experimental data of RCCS resembling experiments is needed and indicate that a 2d-axisymmetric geometry approximation is likely insufficient to capture all the relevant phenomena in RCCS simulations.