• Title/Summary/Keyword: RANK ligand

Search Result 40, Processing Time 0.024 seconds

The effects of sex hormones on the expression of ODF and OPG in human gingival fibroblast and periodontal ligament cell at normal menstruation cycle and menopause.

  • Shin, Ji-Yearn;Baek, Dong-Heon;Han, Soo-Boo
    • International Journal of Oral Biology
    • /
    • v.32 no.2
    • /
    • pp.67-73
    • /
    • 2007
  • Periodontitis is a chronic infectious disease that leads to periodontal destruction, and is one of the major causes of tooth loss in humans. The osteoclast differentiation factor (ODF), which is also known as the receptor activator of the NF-kB ligand (RANKL), is a surface-associated ligand on bone marrow stromal cells and osteoblasts. RANKL activates its cognate receptor, RANK, on osteoclast progenitor cells, which leads to the differentiation of mononucleated precursor cells. Osteoprotegerin (OPG) is a decoy receptor that is released from stromal cells and osteoblasts to inhibit the interaction between RANKL and RANK. Although the precise mechanism of bone loss in periodontitis is unknown, the differentiation and activation of osteoclasts by OPG-ODF-RANK signaling might play the role in periodontal bone destruction. The relationship between the concentration of sex hormones and the expression of ODF and OPG was examined by treating human gingival fibroblasts and periodontal ligament cells with the normal serum concentration of estrogen or progesterone during menstruation or at menopause. The ODF/OPG relative ratio was elevated at the concentration observed during ovulation in human gingival fibroblasts and at the concentration observed between ovulation and menstruation in periodontal ligament cells treated with estrogen. However, the ratio was <1 at all concentrations in both cells treated with progesterone. In the case of menopause simulated by estrogen depletion, the ratio was <1 in human gingival fibroblasts but >1 in periodontal ligament cells.

Afatinib ameliorates osteoclast differentiation and function through downregulation of RANK signaling pathways

  • Ihn, Hye Jung;Kim, Ju Ang;Bae, Yong Chul;Shin, Hong-In;Baek, Moon-Chang;Park, Eui Kyun
    • BMB Reports
    • /
    • v.50 no.3
    • /
    • pp.150-155
    • /
    • 2017
  • Non-small-cell lung cancer (NSCLC) is the third most common cancer that spreads to the bone, resulting in osteolytic lesions caused by hyperactivation of osteoclasts. Activating mutations in epidermal growth factor receptor-tyrosine kinase (EGF-TK) are frequently associated with NSCLC, and afatinib is a first-line therapeutic drug, irreversibly targeting EGF-TK. However, the effects of afatinib on osteoclast differentiation and activation as well as the underlying mechanism remain unclear. In this study, afatinib significantly suppressed receptor activator of nuclear factor ${\kappa}B$ (RANK) ligand (RANKL)-induced osteoclast formation in bone marrow macrophages (BMMs). Consistently, afatinib inhibited the expression of osteoclast marker genes, whereas, it upregulated the expression of negative modulator genes. The bone resorbing activity of osteoclasts was also abrogated by afatinib. In addition, afatinib significantly inhibited RANKL-mediated Akt/protein kinase B and c-Jun N-terminal kinase phosphorylation. These results suggest that afatinib substantially suppresses osteoclastogenesis by downregulating RANK signaling pathways, and thus may reduce osteolysis after bone metastasis.

Molecular docking to EGFR tyrosine kinase domain : Structural Validation against Crystal Structures

  • Jang, Jun-Yeong;Cho, Art E.
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.126-130
    • /
    • 2016
  • Epidermal growth factor receptor(EGFR)는 HER family에 속하는 tyrosine kinase receptor로서 다양한 하류경로로 신호를 전달하여 세포 증식, 혈관 형성, 세포 사멸을 억제하는 역할을 한다. EGFR이 폐암의 형성에 중요한 역할을 하고 많은 상피세포 종양에서 비정상적으로 활성화됨에 따라 암 치료에 중요한 역할을 하고 있어 EGFR tyrosine kinase inhibitor(TKI)에 관한 많은 연구가 이루어졌다. 위와 같은 약 개발에 있어서 현재 가상 시뮬레이션을 통한 약 후보물질 개발이 진행되고 있다. 특히, Molecular docking 시뮬레이션은 기존의 실험적인 기술(X-ray crystallography, NMR)로는 연구하기가 어려웠던 protein과 ligand간의 상호작용을 예측하여 이에 대한 정보를 제공할 수 있다. 하지만, 우선적으로 Molecular docking 시뮬레이션은 정확한 validation을 기반으로 진행되어야 신뢰할 수 있는 정보를 얻을 수 있다. 따라서 이번 연구에서는 EDISON에서 제공하는 Dock 프로그램과 일반적으로 잘 알려진 Glide, Autodock 프로그램으로 protein data bank(PDB)에서 제공하는 EGFR wild type cocrystal을 redocking하는 방식을 통하여 최상위 rank pose의 RMSD 값을 통한 validation 성능을 비교함으로써 어떤 프로그램이 EGFR과 ligand 간의 결합예측을 하는데 있어서 보다 더 정확한 결과를 낼 수 있는지 알아보고자 하였고 시뮬레이션 결과 Autodock에서 가장 우수한 결과 값을 보여주었다.

  • PDF

Design of a RANK-Mimetic Peptide Inhibitor of Osteoclastogenesis with Enhanced RANKL-Binding Affinity

  • Hur, Jeonghwan;Ghosh, Ambarnil;Kim, Kabsun;Ta, Hai Minh;Kim, Hyunju;Kim, Nacksung;Hwang, Hye-Yeon;Kim, Kyeong Kyu
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.316-321
    • /
    • 2016
  • The receptor activator of nuclear factor ${\kappa}B$ (RANK) and its ligand RANKL are key regulators of osteoclastogenesis and well-recognized targets in developing treatments for bone disorders associated with excessive bone resorption, such as osteoporosis. Our previous work on the structure of the RANK-RANKL complex revealed that Loop3 of RANK, specifically the non-canonical disulfide bond at the tip, performs a crucial role in specific recognition of RANKL. It also demonstrated that peptide mimics of Loop3 were capable of interfering with the function of RANKL in osteoclastogenesis. Here, we reported the structure-based design of a smaller peptide with enhanced inhibitory efficiency. The kinetic analysis and osteoclast differentiation assay showed that in addition to the sharp turn induced by the disulfide bond, two consecutive arginine residues were also important for binding to RANKL and inhibiting osteoclastogenesis. Docking and molecular dynamics simulations proposed the binding mode of the peptide to the RANKL trimer, showing that the arginine residues provide electrostatic interactions with RANKL and contribute to stabilizing the complex. These findings provided useful information for the rational design of therapeutics for bone diseases associated with RANK/RANKL function.

The Effects of Cuscuta japonica Chois on Gene Expression in RANKL-induced RAW 264.7 Cell (도사자(菟絲子)가 RANKL 유도 파골세포(破骨細胞)에 미치는 영향)

  • Kim, Joon-Yeon;Hwang, Gwi-Seo
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.14 no.2
    • /
    • pp.77-89
    • /
    • 2010
  • Objectives : This study was performed to evaluate the effect of CJ(Cuscuta japonica Chois) on osteoclast differentiation and gene expression. Methods : The osteoclastogenesis and gene expression were determined in RANKL(receptor activator of nuclear factor kappa B ligand)-stimulated RAW 264.7. The results were summarized as followes. Results : CJ decreased the number of TRAP positive cell in RANKL-stimulated RAW264.7 cell. CJ decreased the expression of RANK(receptor activator of nuclear factor kappa B), $TNF{\alpha}$, and IL-6 in RANKL-stimulated RAW264.7 cell. CJ decreased the expression of iNOS and COX-2 in RANKL-stimulated RAW264.7 cell. CJ decreased the expression of Cathepsin K in RANKL-stimulated RAW264.7 cell. Conclusions : It is concluded that CJ might decrease the bone resorption resulted from decrease of osteoclast differentiation and it's related gene expression.

Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation

  • Park, Jin Hee;Lee, Na Kyung;Lee, Soo Young
    • Molecules and Cells
    • /
    • v.40 no.10
    • /
    • pp.706-713
    • /
    • 2017
  • Osteoclasts are bone-resorbing cells that are derived from hematopoietic precursor cells and require macrophage-colony stimulating factor and receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) for their survival, proliferation, differentiation, and activation. The binding of RANKL to its receptor RANK triggers osteoclast precursors to differentiate into osteoclasts. This process depends on RANKL-RANK signaling, which is temporally regulated by various adaptor proteins and kinases. Here we summarize the current understanding of the mechanisms that regulate RANK signaling during osteoclastogenesis. In the early stage, RANK signaling is mediated by recruiting adaptor molecules such as tumor necrosis factor receptorassociated factor 6 (TRAF6), which leads to the activation of mitogen-activated protein kinases (MAPKs), and the transcription factors nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and activator protein-1 (AP-1). Activated NF-${\kappa}B$ induces the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), which is the key osteoclastogenesis regulator. In the intermediate stage of signaling, the co-stimulatory signal induces $Ca^{2+}$ oscillation via activated phospholipase $C{\gamma}2$ ($PLC{\gamma}2$) together with c-Fos/AP-1, wherein $Ca^{2+}$ signaling facilitates the robust production of NFATc1. In the late stage of osteoclastogenesis, NFATc1 translocates into the nucleus where it induces numerous osteoclast-specific target genes that are responsible for cell fusion and function.

Peri-implant crevicular fluid levels of cathepsin-K, RANKL, and OPG around standard, short, and mini dental implants after prosthodontic loading

  • Alan, Raif;Marakoglu, Ismail;Haliloglu, Seyfullah
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.5
    • /
    • pp.169-177
    • /
    • 2015
  • Purpose: Despite the high success rates of endosseous dental implants, their placement is restricted according to the height and volume of bone available. The use of short or mini dental implants could be one way to overcome this limitation. Thus, this study aimed to compare standard, short, and mini dental implants with regard to associated clinical parameters and peri-implant crevicular fluid (PICF) levels of cathepsin-K (CTSK), RANK ligand (RANKL), and osteoprotegerin (OPG), after prosthodontic loading. Methods: A total of 78 non-submerged implants (Euroteknika, $Aesthetica^{+2}$, Sallanches, France) were installed in 30 subjects (13 male, 17 female; range, 26-62 years) who visited the clinic of the Periodontology Department, Faculty of Dentistry, Selcuk University. Sampling and measurements were performed on the loading date (baseline) and 2, 14, and 90 days after loading. Assessment of the peri-implant status for the implant sites was performed using the pocket probing depth (PPD), modified plaque index, modified gingival index, modified sulcular bleeding index, and radiographic signs of bone loss. PICF samples collected from each implant were evaluated for CTSK, RANKL, and OPG levels using the ELISA method. Keratinized tissue and marginal bone loss (MBL) were also noted. Results: Clinical parameters statistically significantly increased in each group but did not show statistical differences between groups without PPD. Although implant groups showed a higher MBL in the upper jaw, only the standard dental group demonstrated a statistically significant difference. At 90 days, the OPG:sRANKL ratio and total amounts of CTSK for each group did not differ from baseline. Conclusions: Within the limitations of this study, both short and mini dental implants were achieving the same outcomes as the standard dental implants in the early period after loading.

Therapeutic effect of Shinkiwhan, herbal medicine, regulates OPG/RANKL/RANK system on ovariectomy-induced bone loss rat

  • Seo, Il-bok;Lee, Kang Pa;Park, Sun-young;Ahn, Sang-hyun
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.3
    • /
    • pp.19-24
    • /
    • 2020
  • [Purpose] Although physical activity is required to prevent or ameliorate osteoporosis, medicine prescription should precede it, since it may be limited in severe osteoporosis patients. Furthermore, osteoporosis has a great effect on physical activity disorders that accompany fractures and pain, and therefore, research on treatment or prevention to decrease the number of patients is required. The purpose of this study was to discover candidate substances from natural products with an effective pharmacological action and to prepare basic data to help patients. [Methods] To prepare the osteoporosis model, ovariectomy (OVX) was performed using surgical methods. The prepared prescription [Shinkiwhan (SKH), a Korean medicine] was administered orally at a dose of 210 mg/kg/day for 8 weeks. After completion of the animal experiment, the bone mineral density (BMD) was analyzed using double-energy X-ray absorptiometry. The analysis of the effect of drugs on bones was performed using histological analysis and immunostaining. [Results] SKH increased the BMD in the OVX rats. Furthermore, SKH significantly increased the expression of osteoprotegerin and downregulated receptor activator of nuclear factor kappa B ligand and phosphorylation of c-jun N-terminal kinases in the bones of the OVX model. [Conclusion] Our findings suggest a protective effect of SKH against BMD loss in the OVX model.

Effect of TGF-${\beta}1$ on Osteoclast Differentiation

  • Park, Su-Jin;Ko, Jea-Seung;Kim, Hyun-Man
    • International Journal of Oral Biology
    • /
    • v.30 no.4
    • /
    • pp.135-141
    • /
    • 2005
  • Although it has been known that TGF-${\beta}1$ acts as a crucial cofactor in osteoclast differentiation, its mode of action is still unclear. In the present study, we studied the effect of TGF-${\beta}1$ on the differentiation of osteoclast depending on the developmental stages. Murine bone marrow cells were induced to differentiate into mature osteoclasts in the presence of receptor activator of NF-${\kappa}B$ ligand (RANKL) and macrophage colony stimulating factor (M-CSF). In the early stage of the differentiation TRAP(-) mononuclear precursor cells were obtained from nonadherent M-CSF dependent bone marrow cells, which further differentiated into mature osteoclasts. TGF-${\beta}1$ stimulated osteoclast differentiation, which was stronger when cells were stimulated by TGF-${\beta}1$ in the early stage than the later differentiation. TGF-${\beta}1$ increased the expression of RANK and synergistically stimulated RANKL-induced activation of NF-${\kappa}B$ MAP kinase in TRAP(-) mononuclear precursor cells. These results suggest that activation of osteoclast differentiation by TGF-${\beta}1$ may be ascribed to the both increased expression and activation of RANK in the osteoclast differentiation, especially in the early stage of differentiation.

Osteoclasts in the Inflammatory Arthritis: Implications for Pathologic Osteolysis

  • Youn-Kwan Jung;Young-Mo Kang;Seungwoo Han
    • IMMUNE NETWORK
    • /
    • v.19 no.1
    • /
    • pp.2.1-2.13
    • /
    • 2019
  • The enhanced differentiation and activation of osteoclasts (OCs) in the inflammatory arthritis such as rheumatoid arthritis (RA) and gout causes not only local bone erosion, but also systemic osteoporosis, leading to functional disabilities and morbidity. The induction and amplification of NFATc1, a master regulator of OC differentiation, is mainly regulated by receptor activator of NF-κB (RANK) ligand-RANK and calcium signaling which are amplified in the inflammatory milieu, as well as by inflammatory cytokines such as TNFα, IL-1β and IL-6. Moreover, the predominance of CD4+ T cell subsets, which varies depending on the condition of inflammatory diseases, can determine the fate of OC differentiation. Anti-citrullinated peptide antibodies which are critical in the pathogenesis of RA can bind to the citrullinated vimentin on the surface of OC precursors, and in turn promote OC differentiation and function via IL-8. In addition to adaptive immunity, the activation of innate immune system including the nucleotide oligomerization domain leucine rich repeat with a pyrin domain 3 inflammasome and TLRs can regulate OC maturation. The emerging perspectives about the diverse and close interactions between the immune cells and OCs in inflammatory milieu can have a significant impact on the future direction of drug development.