• Title/Summary/Keyword: RAB

Search Result 74, Processing Time 0.02 seconds

Lysophosphatidylcholine Enhances Bactericidal Activity by Promoting Phagosome Maturation via the Activation of the NF-κB Pathway during Salmonella Infection in Mouse Macrophages

  • Lee, Hyo-Ji;Hong, Wan-Gi;Woo, Yunseo;Ahn, Jae-Hee;Ko, Hyun-Jeong;Kim, Hyeran;Moon, Sungjin;Hahn, Tae-Wook;Jung, Young Mee;Song, Dong-Keun;Jung, Yu-Jin
    • Molecules and Cells
    • /
    • v.43 no.12
    • /
    • pp.989-1001
    • /
    • 2020
  • Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that causes salmonellosis and mortality worldwide. S. Typhimurium infects macrophages and survives within phagosomes by avoiding the phagosome-lysosome fusion system. Phagosomes sequentially acquire different Rab GTPases during maturation and eventually fuse with acidic lysosomes. Lysophosphatidylcholine (LPC) is a bioactive lipid that is associated with the generation of chemoattractants and reactive oxygen species (ROS). In our previous study, LPC controlled the intracellular growth of Mycobacterium tuberculosis by promoting phagosome maturation. In this study, to verify whether LPC enhances phagosome maturation and regulates the intracellular growth of S. Typhimurium, macrophages were infected with S. Typhimurium. LPC decreased the intracellular bacterial burden, but it did not induce cytotoxicity in S. Typhimurium-infected cells. In addition, combined administration of LPC and antibiotic significantly reduced the bacterial burden in the spleen and the liver. The ratios of the colocalization of intracellular S. Typhimurium with phagosome maturation markers, such as early endosome antigen 1 (EEA1) and lysosome-associated membrane protein 1 (LAMP-1), were significantly increased in LPC-treated cells. The expression level of cleaved cathepsin D was rapidly increased in LPC-treated cells during S. Typhimurium infection. Treatment with LPC enhanced ROS production, but it did not affect nitric oxide production in S. Typhimurium-infected cells. LPC also rapidly triggered the phosphorylation of IκBα during S. Typhimurium infection. These results suggest that LPC can improve phagosome maturation via ROS-induced activation of NF-κB pathway and thus may be developed as a therapeutic agent to control S. Typhimurium growth.

Green Synthesis of Copper Nano-Drug and Its Dental Application upon Periodontal Disease-Causing Microorganisms

  • El-Rab, Sanaa M.F. Gad;Basha, Sakeenabi;Ashour, Amal A.;Enan, Enas Tawfik;Alyamani, Amal Ahmed;Felemban, Nayef H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1656-1666
    • /
    • 2021
  • Dental pathogens lead to chronic diseases like periodontitis, which causes loss of teeth. Here, we examined the plausible antibacterial efficacy of copper nanoparticles (CuNPs) synthesized using Cupressus macrocarpa extract (CME) against periodontitis-causing bacteria. The antimicrobial properties of CME-CuNPs were then assessed against oral microbes (M. luteus. B. subtilis, P. aerioginosa) that cause periodontal disease and were identified using morphological/ biochemical analysis, and 16S-rRNA techniques. The CME-CuNPs were characterized, and accordingly, the peak found at 577 nm using UV-Vis spectrometer showed the formation of stable CME-CuNPs. Also, the results revealed the formation of spherical and oblong monodispersed CME-CuNPs with sizes ranged from 11.3 to 22.4 nm. The FTIR analysis suggested that the CME contains reducing agents that consequently had a role in Cu reduction and CME-CuNP formation. Furthermore, the CME-CuNPs exhibited potent antimicrobial efficacy against different isolates which was superior to the reported values in literature. The antibacterial efficacy of CME-CuNPs on oral bacteria was compared to the synergistic solution of clindamycin with CME-CuNPs. The solution exhibited a superior capacity to prevent bacterial growth. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and fractional inhibitory concentration (FIC) of CME-CuNPs with clindamycin recorded against the selected periodontal disease-causing microorganisms were observed between the range of 2.6-3.6 ㎍/ml, 4-5 ㎍/ml and 0.312-0.5, respectively. Finally, the synergistic antimicrobial efficacy exhibited by CME-CuNPs with clindamycin against the tested strains could be useful for the future development of more effective treatments to control dental diseases.

Prevalence and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus from Nasal Specimens: Overcoming MRSA with Silver Nanoparticles and Their Applications

  • Aly E. Abo-Amer;Sanaa M. F. Gad El-Rab;Eman M. Halawani;Ameen M. Niaz;Mohammed S. Bamaga
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1537-1546
    • /
    • 2022
  • Staphylococcus aureus is a cause of high mortality in humans and therefore it is necessary to prevent its transmission and reduce infections. Our goals in this research were to investigate the frequency of methicillin-resistant S. aureus (MRSA) in Taif, Saudi Arabia, and assess the relationship between the phenotypic antimicrobial sensitivity patterns and the genes responsible for resistance. In addition, we examined the antimicrobial efficiency and application of silver nanoparticles (AgNPs) against MRSA isolates. Seventy-two nasal swabs were taken from patients; MRSA was cultivated on Mannitol Salt Agar supplemented with methicillin, and 16S rRNA sequencing was conducted in addition to morphological and biochemical identification. Specific resistance genes such as ermAC, aacA-aphD, tetKM, vatABC and mecA were PCR-amplified and resistance plasmids were also investigated. The MRSA incidence was ~49 % among the 72 S. aureus isolates and all MRSA strains were resistant to oxacillin, penicillin, and cefoxitin. However, vancomycin, linezolid, teicoplanin, mupirocin, and rifampicin were effective against 100% of MRSA strains. About 61% of MRSA strains exhibited multidrug resistance and were resistant to 3-12 antimicrobial medications (MDR). Methicillin resistance gene mecA was presented in all MDR-MRSA strains. Most MDR-MRSA contained a plasmid of > 10 kb. To overcome bacterial resistance, AgNPs were applied and displayed high antimicrobial activity and synergistic effect with penicillin. Our findings may help establish programs to control bacterial spread in communities as AgNPs appeared to exert a synergistic effect with penicillin to control bacterial resistance.

Rab Effector EHBP1L1 Associates with the Tetratricopeptide Repeat Domain of Kinesin Light Chain 1 (Kinesin Light Chain 1 (KLC1)의 Tetratricopeptide Repeat (TPR) 도메인과 Rab effector, EHBP1L1의 결합)

  • Jeong, Young Joo;Park, Sung Woo;Kim, Sang-Jin;Kim, Mooseong;Urm, Sang-Hwa;Lee, Jung Goo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.10-17
    • /
    • 2020
  • Kinesin-1 is microtubule-dependent plus-end direct molecular motor protein essential for intracellular transport. It is a member of the kinesin superfamily proteins (KIFs) which transport cargo, including organelles, vesicles, neurotransmitter receptors, cell-signaling molecules, and protein complexes through interaction between its light chain subunit and the cargo. Kinesin light chain 1 (KLC1) is a non-motor subunit that associates with the kinesin heavy chain (KHC). Although KLC1 interacts with many different adaptor proteins and scaffolding proteins, its binding proteins have not yet been fully identified. We used the yeast two-hybrid assay to identify proteins that interact with the tetratricopeptide repeat (TPR) domain of KLC1, and found an interaction between KLC1 and EH domain-binding protein 1 like 1 (EHBP1L1). EHBP1L1 bound to the region containing all six TPR repeats of KLC1 and did not interact with KIF5B (a motor protein of kinesin 1) or KIF3A (a motor protein of kinesin 2) in the yeast two-hybrid assay. The carboxyl-terminus of the coiled-coil domain of EHBP1L1 is essential for interaction with KLC1. However, another EHBP1L1 isoform, EHBP1, did not interact with KLC1 in the yeast two-hybrid assay. KLC1 interacted with GST-EHBP1L1 and its coiled-coil domain but not with GST only. When co-expressed in HEK-293T cells, EHBP1L1 co-localized with KLC1 and co-immunoprecipitated with KLC1 and KIF5B but not KIF3A. These results suggest that kinesin 1 motor protein may transport EHBP1L1-associated cargo in cells.

The Significance of Acetylcholine Receptor Autoantibody Test (아세틸콜린 수용체 항체(Acetylcholine receptor autoantibody) 검사의 의의)

  • Yoo, Soh-Yeon;Lim, Soo-Yeon;Pack, Song-Ran;Seo, Mi-Hye;Moon, Hyung-Ho;You, Sun-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.113-116
    • /
    • 2011
  • Purpose: Acetylcholine receptor antibodies cause acetylcholine receptor loss, which is responsible for failure of the neuromuscular junction in the acetylcholine receptor autoantibody. The disease characterized by muscle weakness and fatigue, myasthenia gravis(MG) occurs when the body inappropriately produces antibodies against acetylcholine receptors, and thus inhibits proper acetylcholine signal transmission. And this reason, the measurement of acetylcholine receptor antibodies can be of considerable value in disease diagnosis. Methods: From 2010. August to September, we tested orderd AchRAb 19 samples to get the results. 1. Pipette $5{\mu}{\ell}$ undiluted patient sera and kit control and add 125I AChR $50{\mu}{\ell}$ and incubate at R.T for 2 hours. 2. Pipette $50{\mu}{\ell}$ of anti-human IgG into each tube, and incubate at $2{\sim}8^{\circ}C$ for 2 hours. 3. Pipette $25{\mu}{\ell}$ precipitation enhancer into each tube and add 1mL washing solution into all tubes. 4. Centrifuge each tube for 20minutes at $2{\sim}8^{\circ}C$ at 1500g. 5. Aspirate or decant the supernatant. 6. Pipette 1 mL washing solution into all tubes and resuspend the pellet and repeat centrifugation. 7. Aspirate or decant the supernatant and count all tubes on a gamma counter. Results: Cut off value is 0.2 nmol/L and the results taken below 0.2 nmol/L are negative, the results above that identified as being positive values. We assayed the 19 patients samples and got 7 positive results. Of which, 6 patients were diagnosed as MG.(85.7%). Conclusions: Acetylcholine Receptor autoantibody test is intended for use by persons only for the quantitative determination of it in human serum. Even if measurement of the antibodies is not a routine test, it can be of considerable value in disease diagnosis.

  • PDF

Effect on Gene Expression Profile of Rat Hippocampus Caused by Administration of Memory Enhancing Herbal Extract (육미지황탕가미방이 흰쥐의 기억능력과 중추신경계 유전자 발현에 미치는 영향)

  • Choi So Eop;Bae Hyun Su;Shin Min Kyu;Hong Moo Chang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.1025-1034
    • /
    • 2002
  • The herbal extract (YMT_02) is a modified herbal extracts from Yukmijihwang-tang (YMJ) to promote memory-enhancing. The YMJ extracts has been widely used as an anti-aging herbal medicine for hundred years in Asian countries. The purpose of this study is to; 1) quantitatively evaluate the memory-enhancing effect of YMT_02 by behavior task, 2) identify candidate genes responsible for enhancing memory by cDNA microarray and 3) assess the anti-oxidant effect of YMT_02 on PC12 cell. Memory retention abilities are addressed by passive avoidance task with Sprague-Dawley (SD) male rat. Before the training session, the rats are subdivided into four groups and administrated with YMT_02, Ginkgo biloba, Soya lecithin and normal saline for 10 days. The retention test was performed. 24 hours after the training session. The retention time of the YMT_02 group was significantly (p<0.05) delayed (~100%), whereas Ginkgo biloba and Soya lecithin treatment delayed 20% and 10% respectively. The hippocampi of YMT_02 and control group were dissected and mANA was further purified. After synthesizing cDNA using oligo-dT primer, the cDNA were applied to Incyte rat GEMTM 2 cDNA microarray. The microarray results show that prealbumin(transthyretin), phosphotidylethanolamine N-methyltransferase, and PEP-19 are expressed abundantly in the YMT_02 treated group. Especially, PEP-19 is a neuron-specific protein, which inhibits apoptotic processes in neuronal cell. On the other hand, transcripts of RAB15, glutamate receptor subunit 2 and CDK108 are abundant in control group. Besides, neuronal genes involved in neuronal death or neurodegeneration such as neuronal-pentraxin and spectrin are abundantly expressed in control group. Additionally, the YMT_02 shows an anti oxidative effect in the PC12 cell. The list of differentially expressed genes may implicate further insight on the action and mechanism behind the memory-enhancing effect of herbal extracts YMT_02, for example, anti-apoptotic, anti-oxidative, and neuroprotective effects.

Change of Protein Patterns in Granulosa Cells and Corpus Luteum during the Ovarian Cycle in Cows (소의 난소주기 동안 과립막세포와 황체조직에서 단백질 패턴의 변화)

  • Song, Eun-Ji;Lee, Yong-Seung;Lee, Sang-Hee;Yoo, Han-Jun;Park, Joung-Jun;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.37 no.3
    • /
    • pp.149-154
    • /
    • 2013
  • The aim of this study was to evaluate the changes of protein patterns in granulosa cells and corpus luteum in ovaries during the estrus cycle in cows. The estrus cycle was devided into five steps of follicular, ovulatory, early-luteal, mid-luteal and late-luteal phases. In results, 61 spots of total 85 spots were repeated on follicular phase and 51 spots of total 114 spots were repeated on ovulatory phase. The 40 spots of total 129 spots were repeated on early-luteal phase and 49 spots of total 104 spots were repeated on mid-luteal phase. Also 41 spots of total 60 spots were repeated on late-luteal phase. On the other hands, the 16 spots were indicated difference in follicular phase and ovulation phase had a difference 10 spots. It was showed difference No. 103 spot in ovulation phase, No. 135 spot in early-luteal phase and No. 175 and 176 spots in mid-luteal phase. Also, the 11 spots were expressed specifically in mid-luteal phase and No. 178 and 179 spots were difference of expression in late-luteal phase. We confirmed that there were 7 spots for ovulation, 4 spots for luteinization and 2 spots for luteolysis. Spot No. 89~93 in ovulation phase were transferrin, and spot No.94~98 were HSP60. Spot No. 103 was Dusty PK, spot No. 135 was OGDC-E2, and spot No. 175 and 176 were Rab GDI beta from luteinization. Spot No. 178 and 179 in luteolysis were vimentin. This results suggest that will be help to basic data about infertility.

Human Intersectin 2 (ITSN2) binds to Eps8 protein and enhances its degradation

  • Ding, Xiaofeng;Yang, Zijian;Zhou, Fangliang;Hu, Xiang;Zhou, Chang;Luo, Chang;He, Zhicheng;Liu, Qian;Li, Hong;Yan, Feng;Wang, Fangmei;Xiang, Shuanglin;Zhang, Jian
    • BMB Reports
    • /
    • v.45 no.3
    • /
    • pp.183-188
    • /
    • 2012
  • Participates in actin remodeling through Rac and receptor endocytosis via Rab5. Here, we used yeast two-hybrid system with Eps8 as bait to screen a human brain cDNA library. ITSN2 was identified as the novel binding factor of Eps8. The interaction between ITSN2 and Eps8 was demonstrated by the in vivo co-immunoprecipitation and colocalization assays and the in vitro GST pull-down assays. Furthermore, we mapped the interaction domains to the region between amino acids 260-306 of Eps8 and the coiled-coil domain of ITSN2. In addition, protein stability assays and immunofluorescence analysis showed ITSN2 overexpression induced the degradation of Eps8 proteins, which was markedly alleviated with the lysosome inhibitor NH4Cl treatment. Taken together, our results suggested ITSN2 interacts with Eps8 and stimulates the degradation of Eps8 proteins.

Histomorphometric study on effect of the polyphosphate for bone regeneration (무기인산염이 골재생에 미치는 효과에 대한 조직계측학적인 연구)

  • Lee, Young-Seok;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Chung, Jong-Hyuk;Jue, Seong-Suk
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.1
    • /
    • pp.65-75
    • /
    • 2007
  • In this study, author examined the effect of the concentration of the inorganic polyphosphate on the process of the bone regeneration by using the 6 weeks old rabbit with the weight of 2.0kg in average. we performed the experiment by using TR-eITFE membrane filled with collagen immersed with 1%, 2%, and 4% of inorganic polyphosphate, respectively, after removing the proper sized cort-ical bones from the calvaria of rabbit. The experimental results were compared with the one of the following four groups: The control group for membrane only, experimental group I for membrane filled with collagen im-mersed with 1% of inorganic polyphosphate, experimental group II for membrane filled with collagen immerse with 2% of inorganic polyphosphate, experimental group III for membrane filled with colla-gen immersed with 4% of inorganic polyphosphate. The fragments of the tissue with membrane were obtained from each group of the sacrificed rab-bits for 4 or 8 weeks sustained after surgery, were then prestained and coated. New bone formation was assessed by histomorphometric and statistical analysis. We may draw the conclusions from these experiments as following: 1. Collagen was an excellent carrier with a minimal inflammatory reaction and sustaining the form. 2. The sample of the 8th week group has shown the best bone regeneration compared with the cases of all groups including the control group. 3. The samples of collagen immersed with 2% and 4% of inorganic polyphosphate have shown more bone regeneration relative to the sample of the 1% inorganic polyphosphate. 4. The new bone regeneration was shown actively in the group for membrane filled with collagen immersed with 4% of inorganic polyphosphate. With above results, it is strongly suggested the use of inorganic polyphosphate with vehicle under TR-eITFE membrane.

Phelan-McDermid syndrome presenting with developmental delays and facial dysmorphisms

  • Kim, Yoon-Myung;Choi, In-Hee;Kim, Jun Suk;Kim, Ja Hye;Cho, Ja Hyang;Lee, Beom Hee;Kim, Gu-Hwan;Choi, Jin-Ho;Seo, Eul-Ju;Yoo, Han-Wook
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.sup1
    • /
    • pp.25-28
    • /
    • 2016
  • Phelan-McDermid syndrome is a rare genetic disorder caused by the terminal or interstitial deletion of the chromosome 22q13.3. Patients with this syndrome usually have global developmental delay, hypotonia, and speech delays. Several putative genes such as the SHANK3, RAB, RABL2B, and IB2 are responsible for the neurological features. This study describes the clinical features and outcomes of Korean patients with Phelan-McDermid syndrome. Two patients showing global developmental delay, hypotonia, and speech delay were diagnosed with Phelan-McDermid syndrome via chromosome analysis, fluorescent in situ hybridization, and multiplex ligation-dependent probe amplification analysis. Brain magnetic resonance imaging of Patients 1 and 2 showed delayed myelination and severe communicating hydrocephalus, respectively. Electroencephalography in patient 2 showed high amplitude spike discharges from the left frontotemporoparietal area, but neither patient developed seizures. Kidney ultrasonography of both the patients revealed multicystic kidney disease and pelviectasis, respectively. Patient 2 experienced recurrent respiratory infections, and chest computed tomography findings demonstrated laryngotracheomalacia and bronchial narrowing. He subsequently died because of heart failure after a ventriculoperitoneal shunt operation at 5 months of age. Patient 1, who is currently 20 months old, has been undergoing rehabilitation therapy. However, global developmental delay was noted, as determines using the Korean Infant and Child Development test, the Denver developmental test, and the Bayley developmental test. This report describes the clinical features, outcomes, and molecular genetic characteristics of two Korean patients with Phelan-McDermid syndrome.