• Title/Summary/Keyword: R32

Search Result 4,130, Processing Time 0.036 seconds

Experimental studies on the evaporative heat transfer of R32/290 mixtures in a horizontal smooth tube (평활관 내 R32/290 혼합냉매의 증발열전달 특성에 관한 실험적 연구)

  • Cho, Jin-Min;Kim, Ju-Hyok;Yoon, Seok-Ho;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.268-273
    • /
    • 2005
  • Because of environmental issues caused by CFC, HCFC or HFC refrigerants, new alternative refrigerants has gained a significant attention. This paper presents experimental information on heat transfer coefficient and pressure drop behavior during evaporation process of R32/290 mixtures in a horizontal smooth tube. A smooth tube with outer diameter of 5 mm and length of 5 m was selected as a test tube. Heat transfer coefficients and pressure drop characteristics were measured for a range of mass fluxes from 497 to 994 $kg/m^2s$, heat fluxes from 12 to 20 $kW/m^2$ and for several mixture compositions(100/0, 75/25, 58.4/41.6, 2s/75, 100/0 by wt% of R32/290). The differences of measured heat transfer characteristics among various R32/290 refrigerant mixtures were analyzed for various compositions.

  • PDF

Condensation heat transfer characteristics of R-22 and R-407C in micro-fin tubes (마이크로핀관에서의 냉매 R-22, R-407C의 응축전열특성에 관한 연구)

  • Roh, Geon-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.50-56
    • /
    • 2008
  • Experimental results for forced convection condensation of Refrigerant-22 and ternary Refrigerant-407C(HFC-32/125/134a 23/25/52 wt%) which is being considered as a substitute R-22 inside a horizontal micro-fin tube are presented. The test section was horizontal double-tube counterflow condenser with a length 4,000 mm micro-fin tube, having 8.53 mm ID, 0.2 mm fin height and 60 fins. The range of parameters of mass velocity were varied from 102.1 to 301.0 kg/(m2.s) and inlet quality 1.0. At the given experimental conditions. the average heat transfer coefficients for R-407C were lower than that for R-22 at a micro-fin tube. Over the mass velocity range tested. the PF(penalty factor) for R-22, R-407C were lower than the increasing ratio of heat transfer area by fins, and the EF(enhancement factor) for R-22, R-407C were higher than the increasing ratio of heat transfer area by fins.

Heat and Mass Transfer Characteristics and Performance Evaluation of a Double-Tube Condenser for an Alternative Refrigerant (대체냉매의 2중관 응축기 열 및 물질전달과 성능평가)

  • 이상무;박병덕;소산번
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.468-476
    • /
    • 2002
  • This paper deals with heat and mass transfer characteristics and performance evaluation of a counter flow double-tube condenser for a multi-component refrigerant mixture. The local heat and mass transfer characteristics of ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a are evaluated for a counter flow double-tube condenser cooled by water. Then, the local values of vapor quality, thermodynamic states at bulk vapor, vapor-liquid interface and bulk liquid, heat flux and condensation mass flux are obtained. The heat exchange performance for ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a on the total pressure drop and the heat transfer characteristics are also compared with those for R404A, R410A, R502, R22, R32, Rl23 and R134a.

VOLUMES OF GEODESIC BALLS IN HEISENBERG GROUPS ℍ5

  • Kim, Hyeyeon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.349-363
    • /
    • 2019
  • Let ${\mathbb{H}}^5$ be the 5-dimensional Heisenberg group equipped with a left-invariant metric. In this paper we calculate the volumes of geodesic balls in ${\mathbb{H}}^5$. Let $B_e(R)$ be the geodesic ball with center e (the identity of ${\mathbb{H}}^5$) and radius R in ${\mathbb{H}}^5$. Then, the volume of $B_e(R)$ is given by $${\hfill{12}}Vol(B_e(R))\\{={\frac{4{\pi}^2}{6!}}{\left(p_1(R)+p_4(R){\sin}\;R+p_5(R){\cos}\;R+p_6(R){\displaystyle\smashmargin{2}{\int\nolimits_0}^R}{\frac{{\sin}\;t}{t}}dt\right.}\\{\left.{\hfill{65}}{+q_4(R){\sin}(2R)+q_5(R){\cos}(2R)+q_6(R){\displaystyle\smashmargin{2}{\int\nolimits_0}^{2R}}{\frac{{\sin}\;t}{t}}dt}\right)}$$ where $p_n$ and $q_n$ are polynomials with degree n.

Study on the Prediction of Pressure Drop for Alternative Refrigerants with lubricant in Micro-Fin Tubes (미세휜관내 윤활유를 포함한 대체냉매의 압력강하 예측에 관한 연구)

  • Choi, Jun-Y.;Lee, Jin-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.83-89
    • /
    • 2000
  • This paper presents a pressure drop correlation for evaporation and condensation of alternative refrigerant with oil in micro-fin tubes. The correlation was developed from a data base consisting of oil-free pure and mixed refrigerants in micro-fin tube; Rl25 R134a. R32 R410a(R32/R125 50/50% mass), R22, R407c(R32/R125/R134a, 23/25/52% mass) and R32/R134a(25/75% mass). The micro-fin tube used in this paper had 60 0.2mm high fins with a 18 helix angle. The cross sectional flow area $(A_c)$ was $60.8 mm^2$ giving an equivalent smooth diameter$(D_e)$ of 8.8mm. The hydraulic diameter $(D_h)$ was estimated to the 5.45mm. The new correlation was obtained by replacing the friction factor and the tube-diameter in Bo Pierre correlation by a friction factor derived from pressure drop data for a micro-fin tube and the hydraulic diameter, respectively. This correlation was also used to predict some pressure data with a lubricant after using a mixing viscosity rule of lubricants and refrigerants. As a result, the new correlation was also well predicted to the measured data within a mean deviation of 19.0%.

  • PDF

SUBMANIFOLDS OF AN ALMOST r-PARACONTACT RIEMANNIAN MANIFOLD ENDOWED WITH A SEMI-SYMMETRIC METRIC CONNECTION

  • Ahmad, Mobin;Jun, Jae-Bok
    • Honam Mathematical Journal
    • /
    • v.32 no.3
    • /
    • pp.363-374
    • /
    • 2010
  • We define a semi-symmetric metric connection in an almost r-paracontact Riemannian manifold and we consider submanifolds of an almost r-paracontact Riemannian manifold endowed with a semi-symmetric metric connection and obtain Gauss and Codazzi equations, Weingarten equation and curvature tensor for submanifolds of an almost r-paracontact Riemannian manifold endowed with a semi-symmetric metric connection.