HOMOGENEOUS IDEAL $I(+) I M$ OF R(+)M

Yong Hwan Cho

Abstract

In this short paper, we show that properties of an ideal I of a ring R are related to those of the homogeneous ideal $I(+) I M$ of a ring $R(+) M$.

1. Introduction

Throughout this paper, all rings are commutative rings with unity and all modules are unital. R-module M is called multiplication module if every submodule N of M has the form $I M$ for some ideal I of R. Equivalently, $N=(N: M) M . R$-module M is said to be divisible if $M=r M$ whenever r is an element of R which is not a zero divisor.
R-module M is called cancellation if whenever $\mathcal{A} M=\mathcal{B} M$ for ideals \mathcal{A} and \mathcal{B} of R, then $\mathcal{A}=\mathcal{B}$.

Let M be an R-module. Consider $R(M)=\{(r, m) \mid r \in R, m \in M\}$ and let (r, m) and (s, n) be two elements of $R(M)$. Define:

1. $(r, m)=(s, n)$ if $r=s$ and $m=n$
$2 .(r, m)+(s, n)=(r+s, m+n)$
2. $(r, m)(s, n)=(r s, r n+s m)$

Received October 06, 2010. Accepted November 30, 2010.
2000 AMS Subject Classification: 13C13, 13C05,13A15
Key words and phrases : homogeneous ideal, presimplifiable, invertible submodule, multiplication module, idealization

Under these definition, $R(M)$ becomes a commutative ring with unity and $R(M)$ is called the idealization of a ring R and an R module M. Sometimes $R(M)$ is also denoted by $R(+) M$. We can find some basic results about $R(M)([8])$. An ideal H of $R(+) M$ is called homogeneous if $H=I(+) N$ where I is an ideal of R and N a submodule of M. In this case, $I(+) N=(R(+) M)(I(+) N)=$ $I(+)(I M+N)$ gives $I M \subseteq N$. If $I M \subseteq N$, then M / N is an $R / I-$ module and $g: R(+) M \rightarrow R / I(+) M / N$ defined by $g(r, m)=(r+$ $I, m+N)$ is a ring homomorphism and $\operatorname{ker}(g)=I(+) N$ and hence $I(+) N$ is an ideal of $R(+) M$. So we know that $I(+) N$ is an ideal of $R(+) M$ if and only if $I M \subseteq N$. Every ideal of $R(+) M$ of the form $I(+) N$ is homogeneous. However, ideals of $R(+) M$ need not have the form $I(+) N$, that is, need not be homogeneous. $Z(+) 2 Z(2,2)$ is not a homogeneous ideal of $Z(+) 2 Z([2])$. In this paper, we show that properties of an ideal I of a ring R are related to those of the homogeneous ideal $I(+) I M$ of a ring $R(+) M$.

2. Ideals I and $I(+) I M$.

Compare the following Theorem with Proposition 11 in [3]
Theorem 2.1. Let R be a ring and M an R-module and I an ideal of R. If $I(+) I M$ is a cancellation ideal of $R(+) M$ then I is a cancellation ideal of R. The converse is true if M is a divisible multiplication module over a domain R with $\operatorname{ann}(M \otimes R / \mathcal{A})=\mathcal{A}$ for every ideal \mathcal{A} of R.

Proof. Suppose that $I(+) I M$ is a cancellation ideal of $R(+) M$ and let $\mathcal{A} I=\mathcal{B} I$ for ideals \mathcal{A}, \mathcal{B} of $R .(\mathcal{A}(+) M)(I(+) I M)=\mathcal{A} I(+)$ $(\mathcal{A} I M+I M)=\mathcal{A} I(+) I M=\mathcal{B} I(+) I M=\mathcal{B} I(+)(\mathcal{B} I M+I M)=$ $(\mathcal{B}(+) M)(I(+) I M$. Since $I(+) I M$ is a cancellation ideal of $R(+) M$, $\mathcal{A}(+) M=\mathcal{B}(+) M$ and so $\mathcal{A}=\mathcal{B}$. Now we prove the converse.

If M is a divisible module over a domain R, then every ideal of $R(+) M$ is homogeneous ([4]-Theorem 3.3). So, for ideals H, H^{\prime} of $R(+) M$ such that $H(I(+) I M)=H^{\prime}(I(+) I M)$ we have $H=\mathcal{A}(+) N$ and $H^{\prime}=\mathcal{B}(+) K$, where \mathcal{A} and \mathcal{B} are ideals of R and N, K are submodules of M
$H(I(+) I M)=(\mathcal{A}(+) N)(I(+) I M)=\mathcal{A} I(+)(\mathcal{A I M}+I N)$ $=\mathcal{A} I(+) I N$ since $\mathcal{A} M \subseteq N$.

Similarly $H^{\prime}(I(+) I M)=(\mathcal{B}(+) K)(I(+) I M)=\mathcal{B} I(+) I K$.
Hence $\mathcal{A} I=\mathcal{B} I$ and $I N=I K$. Since I is cancellation, $\mathcal{A}=\mathcal{B}$ and from $N=(N: M) M$ and $K=(K: M) M$ we have $I(N:$ $M) M=I(K: M) M$. On the other hand, $\operatorname{ann}(M \otimes R / \mathcal{A})=\mathcal{A}$ implies that $\operatorname{ann}(M / \mathcal{A} M)=\mathcal{A}$ and hence $(\mathcal{A} M: M)=\mathcal{A}$ for any ideal \mathcal{A} of R. Now, let $\mathcal{I} M=\mathcal{J} M$ for ideals \mathcal{I}, \mathcal{J} of R. Then $\mathcal{I}=(\mathcal{I} M: M)=(\mathcal{J} M: M)=\mathcal{J}$. So M is cancellation and $I(N: M)=I(K: M)$. Again, since I is cancellation $(N: M)=$ $(K: M)$. Therefore $N=(N: M) M=(K: M) M=K$ and $\mathcal{A}(+) N=\mathcal{B}(+) K$. i.e, $H=H^{\prime}$

Corollary 2.2. Let R be a ring and M an R-module. If every ideal of $R(+) M$ is cancellation then every ideal of R is cancellation.

Proof. Suppose that every ideal of $R(+) M$ is cancellation and let \mathcal{A} be any ideal of R. $\mathcal{A}(+) \mathcal{A} M$ is an ideal of $R(+) M$ and so cancellation. By Theorem $2.1 \mathcal{A}$ is cancellation.

Corollary 2.3. Let R be a ring and M a faithful multiplication R-module. If every faithful ideal of $R(+) M$ is cancellation then every faithful ideal of R is cancellation.

Proof. Let \mathcal{A} be any faithful ideal of R. Since M is a faithful multiplication R-module, we know that ann $(\mathcal{A}(+) \mathcal{A} M)=a n n \mathcal{A} M$
$(+)(a n n \mathcal{A}) M([5]-$ Remark 1) and $\operatorname{ann}(\mathcal{A} M) \subseteq \operatorname{ann}(\mathcal{A})=0$. Therefore ann $(\mathcal{A}(+) \mathcal{A} M)=0(+) 0$. So $(\mathcal{A}(+) \mathcal{A} M)$ is a faithful ideal of $R(+) M$ and by our assumption $(\mathcal{A}(+) \mathcal{A} M)$ is cancellation. Therefore \mathcal{A} is cancellation by the above Theorem 2.1

Proposition 2.4. Let I be an ideal of R and M an R - module. Then I is idempotent in R if and only if $I(+) I M$ is idempotent in $R(+) M$.

Proof. Let $I^{2}=I$. Then $(I(+) I M)^{2}=(I(+) I M)(I(+) I M)=$ $\left.I^{2}(+) I^{2} M+I^{2} M\right)=\left(I^{2}(+) I M\right)=(I(+) I M)$. So $I(+) I M$ is idempotent. Conversely, if $\left(I(+) I M\right.$ is idempotent then $I^{2}(+) I M$ $=I(+) I M$ and so $I^{2}=I$.
$\operatorname{Ali}([1])$ defined idempotent submodule as follows. A submodule N of an R-module M is called idempotent if $N=(N: M) N$. If we put $N=I$ for an ideal I of R and $M=R$ then we know that this is a generalized concept of idempotent ideal.

Proposition 2.5. Let I be an ideal of R and M an $R-\bmod -$ ule. If $I(+) I M$ is an idempotent ideal of $R(+) M$ then $I M$ is an idempotent submodule of M.

Proof. Since $I(+) I M$ is idempotent, $(I(+) I M)^{2}=I^{2}(+) I^{2} M=$ $I(+) I M$. Then $I^{2} M=I M$ and $I^{2} M=I(I M) \subseteq(I M: M) I M \subseteq$ $I M$. Hence $I M=(I M: M) I M$ and $I M$ is idempotent.

Proposition 2.6. Let I be an ideal of R and M a finitely generated faithful multiplication R - module. Then I is an idempotent ideal of R if and only if $I M$ is an idempotent submodule of M.

Proof. If I is an idempotent ideal of R then $I(+) I M$ is an idempotent ideal of $R(+) M$. Hence $I M$ is an idempotent submodule
of M (Proposition 2.5). Conversely, if $I M$ is an idempotent submodule of M then $I M=(I M: M) I M$ and by our assumption $I M=I(I M: M) M=I^{2} M$. Since M is cancellation module([9]Theorem 6.1) $I=I^{2}$
$\operatorname{Ali}([1])$ introduced the concept of nilpotent submodule which is a generalized concept of nilpotent ideal. A submodule N of M is called a nilpotent submodule if $(N: M)^{k} N=0$

Proposition 2.7. Let I be an ideal of R and M an $R-\operatorname{module}$. Then I is nilpotent in R if and only if $I(+) I M$ is nilpotent in $R(+) M$.

Proof. Let $I^{n}=0$ for some positive integer n. Then $(I(+) I M)^{n}$ $=\left(I^{n}(+) I^{n} M\right)=0(+) 0$. Hence $I(+) I M$ is nilpotent. Conversely, if $I(+) I M$ is nilpotent then there exists a positive integer k such that $(I(+) I M)^{k}=0(+) 0$ and hence $I^{k}=0$.

Proposition 2.8. Let I be an ideal of R and M a finitely generated faithful multiplication R - module. If $I(+) I M$ is a nilpotent ideal of $R(+) M$ then $I M$ is a nilpotent submodule of M.

Prof. By our assumption there exists a positive integer k such that $(I(+) I M)^{k}=0(+) 0$. So $I^{k} M=0$. Since M is cancellation module([9]-Theorem 6.1) and faithful, $I=(I M: M)([9]-P r o p o s i t i o n ~$ 1.4) and hence $(I M: M)^{k} I M=I^{k} I M=I\left(I^{k} M\right)=0$. Therefore $I M$ is nilpotent.

Proposition 2.9. Let I be an ideal of R and M a faithful multiplication R - module. Then I is a nilpotent ideal of R if and only if $I M$ is a nilpotent submodule of M.

Proof. Suppose that $I M$ is nilpotent. Then $(I M: M)^{k} I M=$ 0 for some positive integer k. So $(I M: M)^{k-1}(I M: M) I M=$ 0 . Since M is a multiplication module, $(I M: M)^{k-1} I^{2} M=0$.
$(I M: M)^{k-2}(I M: M) I^{2} M=0$ and hence $(I M: M)^{k-2} I^{3} M=0$.
Continue this way. Then we arrive at $(I M: M) I^{k} M=I^{k}(I M$: $M) M=I^{k+1} M=0$. Since M is faithful, $I^{k+1}=0$.

An ideal \mathcal{A} of a ring R is said to be regular if it contains a nonzero divisor element.

Theorem 2.10. Let I be an ideal of a ring R and M an $R-$ module. If $I(+) I M$ is a regular ideal of $R(+) M$ then I is a regular ideal of R. The converse is true if M is torsion free.

Proof. Suppose that $I(+) I M$ is regular and let $(i, m) \in I(+) I M$ be a regular element in $R(+) M$. To show that $i \in I$ is a regular element in R, let $i j=0$ for $j \in R$. Then $(0, j m)(i, m)=(0, i j m)=$ $(0,0)$. Since (i, m) is regular, $j m=0$ and $(j, 0)(i, m)=(0,0)$. Thus $j=0$. i.e, $i \in I$ is regular and I is regular. Conversely, suppose that M is torsion free and $i \in I$ is regular. Consider an element $\left(i, m^{\prime}\right) \in I(+) I M$ and let $(j, n)\left(i, m^{\prime}\right)=(0,0)$ for an element $(j, n) \in$ $R(+) M$. Then $j i=0, j m^{\prime}+i n=0$. Since i is regular, $j=0$ and hence $0=j m^{\prime}+i n=i n$. Thus $n=0$ because M is torsion free. So (i, m^{\prime}) is regular in $R(+) M$ and $I(+) I M$ is regular.

THEOREM 2.11. Let I be a nonzero ideal of a ring R and M an R - module. If $I(+) I M$ is an invertible ideal of $R(+) M$ then I is an invertible ideal of R. The converse is true if M is faithful and multiplication.

Proof. In a ring the concepts of invertible ideal and regular multiplication ideal coincide ([7]-Theorem 7.2). Therefore, if $I(+) I M$ is invertible, $I(+) I M$ is both regular and multiplication ideal. So, I is a multiplication ideal([2]-Theorem 7). Further I is regular by Theorem 2.10. Therefore I is invertible. Conversely, If I is invertible then I is regular and multiplication and so, $I(+) I M$
is a multiplication ideal([2]-Theorem 7). Since M is faithful multiplication, M is torsion free ([6]-Lemma 4.1) and since I is regular, $I(+) I M$ is regular by Theorem 2.10. Therefore $I(+) I M$ invertible.

A ring R is presimplifiable if for $x, y \in R, x y=x$ implies $x=0$ or y is a unit. R - module M is R-presimplifiable if for $r \in R$ and $m \in M, r m=m$ implies r is a unit or $m=0$. This generalizes the previous definition of R being presimplifiable.

Theorem 2.12. Let I be an ideal of a ring R and M an R module. Then, I and $I M$ are R-presimplifiable if and only if $I(+) I M$ is $R(+) M$-presimplifible.

Proof. Suppose that I and $I M$ are R-simplifiable. Let (r, m) $\left(i, m^{\prime}\right)=\left(i, m^{\prime}\right)$, where $i \in I, m^{\prime} \in I M, r \in R$ and $m \in M$. Then $r i=i$ and $r m^{\prime}+i m=m^{\prime}$. Since I is R-presimplifiable $r \in U(R)$, the set of all unit elements in R or $i=0$. However $U(R(+) M)=U(R)(+) M([4]$-Theorem 3.7) and hence if $r \in U(R)$ then $(r, m) \in U(R(+) M)$ and if $i=0$ then $r m^{\prime}=m^{\prime}$. Since $I M$ is R-presimplifiable $m^{\prime}=0$ and $\left(i, m^{\prime}\right)=(0,0)$ or $(r, m) \in$ $U(R)(+) M=U(R(+) M)$. In any case we have $(r, m) \in U(R(+) M)$ or $\left(i, m^{\prime}\right)=(0,0)$. Conversely, Assume that $I(+) I M$ is $R(+) M-$ presimplifiable. Let $r i=i$ for $r \in R$ and $i \in I$. Then $(r, 0)(i, 0)=$ $(i, 0)$ and $(r, 0) \in U(R(+) M)$ or $(i, 0)=(0,0)$. Therefore $r \in U(R)$ or $i=0$.

REFERENCES

1. M.M.Ali, Idempotent and nilpotent submodules of multiplication modules, Comm.in Algebra vol. 36 (2008), 4620-4642.
2. \qquad , Idealization and theorem of D.D.Anderson, Comm. in Algebra vol. 35 (2006), 4479-4501.
3. \qquad , Half Cancellation Modules and Homogeneous Idealization, Comm. in Algebra vol. 35 (2007), 3524-3543.
4. D.D.Anderson and M.Winders, Idealization of a module, J.of Commutative Algebra vol. 1 no. 1 (2009), 3-56.
5. Y.H.Cho, Homogeneous and Primary Ideals of $R(+) M$, Honam Math J. vol 31 no. 3 (2009), 429-436.
6. Z.A.El-Bast and P.F.Smith, Multiplication Modules, Comm.in Algebra vol. 16(4) (1988), 766-779.
7. R.Gilmer, Multiplicative Ideal Theory, New York;Marcel Dekker (1972).
8. J.A.Huckaba, Commutative rings with zero divisors, New York;Marcel Dekker. (1988).
9. A.G.Naoum and A.S.Mijbass, Weak cancellation modules, Kyungpook Math.J. vol. 37 (1997), 73-82.

Department of Mathematics Education
and Institute of Pure
and Applied Mathematics,
Chonbuk National University,561-756,
Chonju,Korea

