• Title/Summary/Keyword: R-mode System

Search Result 439, Processing Time 0.029 seconds

A Modified Perturb and Observe Sliding Mode Maximum Power Point Tracking Method for Photovoltaic System uUnder Partially Shaded Conditions

  • Hahm, Jehun;Kim, Euntai;Lee, Heejin;Yoon, Changyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.281-292
    • /
    • 2016
  • The proposed scheme is based on the modified perturb and observe (P&O) algorithm combined with the sliding mode technique. A modified P&O algorithm based sliding mode controller is developed to study the effects of partial shade, temperature, and insolation on the performance of maximum power point tracking (MPPT) used in photovoltaic (PV) systems. Under partially shaded conditions and temperature, the energy conversion efficiency of a PV array is very low, leading to significant power losses. Consequently, increasing efficiency by means of MPPT is particularly important. Conventional techniques are easy to implement but produce oscillations at MPP. The proposed method is applied to a model to simulate the performance of the PV system for solar energy usage, which is compared to the conventional methods under non-uniform insolation improving the PV system utilization efficiency and allowing optimization of the system performance. The modified perturb and observe sliding mode controller successfully overcomes the issues presented by non-uniform conditions and tracks the global MPP. Compared to MPPT techniques, the proposed technique is more efficient; it produces less oscillation at MPP in the steady state, and provides more precise tracking.

INTEGRATED CONTROL SYSTEM DESIGN OF ACTIVE FRONT WHEEL STEERING AND FOUR WHEEL TORQUE TO IMPROVE VEHICLE HANDLING AND STABILITY

  • Wu, J.Y.;Tang, H.J.;Li, S.Y.;Zheng, S.B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.299-308
    • /
    • 2007
  • This study proposes a two-layer hierarchical control system that integrates active front wheel steering and four wheel braking torque control to improve vehicle handling performance and stability. The first layer is a robust model matching controller (R-MMC) based on linear matrix inequalities (LMIs), which optimizes an active front steering angle compensation and a desired yaw moment control, and calculates reference wheel slip for the target wheel according to the desired yaw moment. The second layer is a moving sliding mode controller (MSMC) that can track the reference wheel slip in a predetermined time by commanding proper braking torque on the target wheel to achieve the desired yaw moment. Since vehicle sideslip angle measurement is difficult to achieve in practice, a sliding mode observer (SMO) that requires only vehicle yaw rate as the measured input is also developed in this study. The performance and robustness of the SMO and the integrated control system are demonstrated through comprehensive computer simulations. Simulation results reveal the satisfactory tracking ability of the SMO, and the superior improved vehicle handling performance, stability and robustness of the integrated control vehicle.

A Single-Chip, Multichannel Combined R2MFC/DTMF/CCT Receiver Using Digital Signal Processor (DSP 칩을 이용한 다중채널 R2MFC/DTMF/CCT 겸용 수신기)

  • 김덕환;이형호;김대영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.10
    • /
    • pp.21-31
    • /
    • 1994
  • This paper describes the multichannel combined R2MFC/DTMF/CCT reciver which provides a signaling service functions for call processing control in digital switching system. Using the TMS320C25 DSP chip, we have implemented multi-function receriver shich processes 8 channels of R2MFC, DTMF, and CCT signals simultaneously. In order to increase the channel multiplicity of the combined receiver. R2MFC and CCT receiver were employed by discrete Fourier transform(DFT) method using Goertzel algorithm, and DTMFreceiver was employ by infinite impulse reponse(IIR) filtering method using 4KHz subsampling technique. The combined receiver has 4 function modes for each channel such as R2MFC, DTMF, CCT, and Idle modes. The function mode of each channel may be selected at any time by single-chip micro-controller(.mu.C). Hence, the number of channels assigned for each function mode can be adjusted dynamically according to the signaling traffic variations. From the experimental test results using the test-bed, it has been proved that the combined receiver statisfies all receiver satisfies all receiver specifications, and provides good channel multiplicity and performance, Therefore, it may give a great improvement than existing receiver in cost, reliability, availability, and serviceability.

  • PDF

Throughput Analysis of R-NAD in MIL-STD-188-220 (MIL-STD-188-220의 R-NAD 처리율 분석)

  • Kim, Sangsoo;Gu, Sungmo;Lim, Jaesung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.561-568
    • /
    • 2014
  • The Republic of Korea Army is using R-NAD of MIL-STD-188-220 as a Media Access Control protocol. Under urgent situations, almost all stations transmit data frames and then the network will reach a saturation state. Several articles have been devoted to the study of R-NAD performance. However, most of them focus on comparing the performance of some NADs using network simulation tools. We propose an analytical model to compute the throughput of R-NAD under the assumption of a network traffic saturation. Analytical results were verified by Monte Carlo methods. We have shown that the performance of a success probability and an average idle time remains almost unchanged as the total number of stations increases. We have also shown that Type 1/2/4 operation mode outperforms Type 3 operation mode in throughput. The results showed that the system with a squelch detection achieved a better performance than the one without it. The longer DATA time had a higher throughput.

Implementation of an Auto-Steering System for Recreational Marine Crafts Using Android Platform and NMEA Network

  • Beirami, Mohammadamin;Lee, Hee Yong;Yu, Yung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.577-585
    • /
    • 2015
  • This paper deals with development of an autopilot system for leisure yacht based on NMEA 2000 network and android platform. The developed system can operate both for manual steering and automatic navigation mode. In automatic steering mode, after manipulation of commands which are NMEA 0183 sentences by android platform, the developed system translates and sends the packets through NMEA 2000 network. Then the controller which is connected to NMEA 2000 network receives the commands and controls the boat's rudder system automatically. The automatic steering mode is achieved by cooperation of two controllers; one for controlling the rudder system, and the other for controlling the vessel's heading. To control the vessel's rudder and heading angle two PID controllers are developed with an adjustable dead-band gain. Also, in order to eliminate the steady-state error occurred by applying dead-band, an integral controller which specifically supervises the system's behavior inside the dead-band area is developed. In this paper, at the first stage, simulations are accomplished using computer in order to examine the feasibility of the proposed based on simulation results. In the next step, the system on a real hydraulic steering model is implemented and at the end the performance examination by implementing it on a real boat and doing test navigation is executed.

Linear Analysis of Geared System with a Manual Transmission (수동 변속기 내 기어 선형해석을 통한 동역학적 해석)

  • Ahn, Min-Ju;Cho, Sung-Min;Yoon, Jong-Yun;Kim, Jun-Seong;Lyu, Sung-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.1-6
    • /
    • 2007
  • Vibro-impacts in manual transmissions result due to several nonlinearities such as multi-staged clutch characteristics and gear backlashes. For the sake of understanding the torsional system, one specific manual transmission with front engine and front wheel drive configuration is investigated with a linear model under the several assumptions substituting the nonlinear factors. First, this system is examined with the mathematical approaches by expressing the governing equations to find out the torsional motions. Second, this system is analyzed using the linear model in order to understand its modal and frequency response characteristics using eigensolution method and the FRF(Frequency Responses Function) analysis. Third, with the given results from the eigensolutions, several mode shapes are investigated related to the torsional motion characteristics. Fourth, the system characteristics with the FRFs are studied with the basic approach, with which the several key parameters will be suggested based upon the results in the further studies.

Improvement of aeroelastic stability of hingeless helicopter rotor blade by passive piezoelectric damping

  • Yun, Chul-Yong;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.54-64
    • /
    • 2006
  • To augment weakly damped lag mode stability of a hingeless helicopter rotor blade in hover, piezoelectric shunt with a resistor and an inductor circuits for passive damping has been studied. A shunted piezoceramics bonded to a flexure of rotor blade converts mechanical strain energy to electrical charge energy which is dissipated through the resistor in the R-L series shunt circuit. Because the fundamental lag mode frequency of a soft-in-plane hingeless helicopter rotor blade is generally about 0.7/rev, the design frequency of the blade system with flexure sets to be so. Experimentally, the measured lag mode frequency is 0.7227/rev under the short circuit condition. Therefore the suppression mode of this passive damping vibration absorber is adjusted to 0.7227/rev. As a result of damping enhancement using passive control, the passive damper which consists of a piezoelectric material and shunt circuits has a stabilizing effect on inherently weakly damped lag mode of the rotor blades, at the optimum tuning and resistor condition.

Evaluation of AIS-TWR for Maritime Asynchronous R-mode (해사업무용 비동기식 R-mode를 위한 AIS-TWR 성능 평가)

  • Shim, Woo-Seong;Lee, Sang-Jeong
    • Journal of Navigation and Port Research
    • /
    • v.41 no.3
    • /
    • pp.87-92
    • /
    • 2017
  • To enhance the reliability and/or resilience of the PNT service included in the e-Navigation strategy of the IMO, the evaluation of the AIS-TWR method for the asynchronous R-mode for maritime service, which is available even in the absence of the GNSS, is described. For the AIS-TWR, which is capable of ranging through message exchange even without high precision synchronization, the operation scenario and the error factors according to the AIS system specifications are proposed and analyzed. Cramer-Rao Lower Bound is presented for the performance evaluation of the AIS-TWR algorithm. A simulation by AIS-TWR method of two AIS systems in a 3 km static environment shows estimation error of about 41m compared to the real value..

Suppression of Radiation-Noise in the SMPS by using Quasi-Resonant Flyback Switching Regulator (준공진형 프라이백 스위칭 레귤레이터를 적용한 SMPS의 방사노이즈 억제)

  • Ra, B.H.;Kim, Y.R.;Park, S.W.;Kim, J.I.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.137-139
    • /
    • 2005
  • 본 논문에서는 30W급 스위칭형 직류전원장치 (Switching Mode Power Supply : SMPS)에 준공진형 프라이 백 스위칭 레귤레이터(quasi-resonant flyback switching regulator)를 적용하여 방사노이즈(radiation-noise)를 억제한 사례에 대하여 설명하고 있다. 기존의 PI사(社)의 TOP IC 시리즈$^{[1]}$와 같이 보편적으로 사용되고 있는 일명, 하드 스위칭(hard-switching)형 레귤레이터를 사용할 경우, 고속 스위칭시에 스위칭 손실(switching loss)과 스위칭 노이즈(switching noise)가 발생한다. 이로 인하여 SMPS의 발열에 따른 효율저화와 방사 노이즈에 의한 전파방해 등이 문제점이 된다. 본 논문에서는 일본의 Sanken사(社)에서 개발/시판중인 준공진형 스위칭 레귤레이터인 STR-F6000 IC 시리즈$^{[2]}$를 이용하여 프라이백 SMPS를 구성하여 방사노이즈를 저감하였다.

  • PDF

Optimal variables of TMDs for multi-mode buffeting control of long-span bridges

  • Chen, S.R.;Cai, C.S.;Gu, M.;Chang, C.C.
    • Wind and Structures
    • /
    • v.6 no.5
    • /
    • pp.387-402
    • /
    • 2003
  • In the past decades, much effort has been made towards the study of single-mode-based vibration controls with dynamic energy absorbers such as single or multiple Tuned Mass Dampers(TMDs). With the increase of bridge span length and the tendency of the bridge cross-section being more slender and streamlined, multi-mode coupled vibrations as well as their controls have become very important for large bridges susceptible to strong winds. As a simple but effective device, the TMD system especially the semi-active one has become a promising option for such coupled vibration controls. However, despite various studies of optimal controls of single-mode-based vibrations with TMDs, research on the corresponding controls of the multi-mode coupled vibrations is very rare so far. For the development of a semi-active control strategy to suppress the multi-mode coupled vibrations, a comprehensive parametric analysis on the optimal variables of this control is substantial. In the present study, a multi-mode control strategy named "three-row" TMD system is discussed and the general numerical equations are developed at first. Then a parametric study on the optimal control variables for the "three-row" TMD system is conducted for a prototype Humen Suspension Bridge, through which some useful information and a better understanding of the optimal control variables to suppress the coupled vibrations are obtained. This information lays a foundation for the design of semi-active control.