• Title/Summary/Keyword: R-gene

Search Result 3,860, Processing Time 0.026 seconds

Utility of the pat gene as a selectable marker gene in production of transgenic Dunaliella salina

  • Jung, Hyo Sun;Kim, Dong Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.7
    • /
    • pp.31.1-31.6
    • /
    • 2016
  • Background: The objective of this study was to develop an efficient selectable marker for transgenic Dunaliella salina. Results: Tests of the sensitivity of D. salina to the antibiotic chloramphenicol and the herbicide Basta$^{(R)}$ showed that cells ($1.0{\times}10^6cells/ml$) treated with 1000 or $1500{\mu}g/ml$ chloramphenicol died in 8 or 6 days, respectively, whereas D. salina cells ($1.0{\times}10^6cells/ml$) treated with 5, 10, 20, or $40{\mu}g/ml$ Basta$^{(R)}$ died in 2 days. Therefore, D. salina is more sensitive to Basta$^{(R)}$ than to chloramphenicol. To examine the possibility of using the phosphinothricin N-acetyltransferase (pat) gene as a selectable marker gene, we introduced the pat genes into D. salina with particle bombardment system under the condition of helium pressure of 900 psi from a distance of 3 cm. PCR analysis confirmed that the gene was stably inserted into the cells and that the cells survived in $5{\mu}g/ml$ Basta$^{(R)}$, the medium used to select the transformed cells. Conclusions: The findings of this study suggest that the pat gene can be used as an efficient selectable marker when producing transgenic D. salina.

Phylogenetic relationships of Arthrospira strains inferred from 16S rRNA gene and cpcBA-IGS sequences

  • Choi, Gang-Guk;Ahn, Chi-Yong;Oh, Hee-Mock
    • ALGAE
    • /
    • v.27 no.2
    • /
    • pp.75-82
    • /
    • 2012
  • $Arthrospira$ $platensis$ and $Arthrospira$ $maxima$ are species of cyanobacteria used in health foods, animal feed, food additives, and fine chemicals. This study conducted a comparison of the 16S rRNA gene and $cpcBA$-intergenic spacer ($cpcBA$-IGS) sequences in $Arthrospira$ strains from culture collections around the world. A cluster analysis divided the 10 $Arthrospira$ strains into two main genotypic clusters, designated I and II, where Group I contained $A.$ $platensis$ SAG 86.79, UTEX 2340, $A.$ $maxima$ KCTC AG30054, and SAG 49.88, while Group II contained $A.$ $platensis$ PCC 9108, NIES 39, NIES 46, and SAG 257.80. However, although $A.$ $platensis$ PCC 9223 belonged to Group II-2 based on its $cpcBA$-IGS sequence, this strain also belonged to Group I based on its 16S rRNA gene sequence. Phylogenetic analyses based on the 16S rRNA gene and $cpcBA$-IGS sequences showed no division between $A.$ $platensis$ and $A.$ $maxima$, plus the 16S rRNA gene and $cpcBA$-IGS sequence clusters did not indicate any well-defined geographical distribution, instead overlapping in a rather interesting way. Therefore, the current study supports some previous conclusions based on 16S rRNA gene and $cpcBA$-IGS sequences, which found that $Arthrospira$ taxa are monophyletic. However, when compared with 16S rRNA sequences, $cpcBA$-IGS sequences may be better suited to resolve close relationships and intraspecies variability.

Genetic Relationships among Six Korean Rana Species (Amphibia; Ranidae) Based on the Mitochondrial Cytochrome b Gene

  • Lee, Jung-Eun;Yang, Suh-Yung;Lee, Hei-Yung
    • Animal cells and systems
    • /
    • v.4 no.2
    • /
    • pp.117-121
    • /
    • 2000
  • Genetic relationships among six species of the genus Rana from Korea were investigated by complete nucleotide sequence analyses of mitochondrial cytochrome b gene (1143 bp). Based on Kimura-2-parameter distance, the interspecific sequence differences of cytochrome b gene within the genus Rana were ranged from 7.83% to 25.00%. The genetic distances were 7.83% between R. nigromaculata and R. plancyi, 8.47% between two types of R. rugosa (type A and B), 10.42% between the brown frogs (R. amurensis and R. dybowskii), 16.11% between R. dybowskii types 1 and 2 and 12.36% between pond frogs (R. nigromaculata and R. plancyi) and R. catesbeiana. In the neighbor-joining and parsimony trees, R. catesbeiana was more closely related to pond frogs than brown frogs. R. dybowskii types 1 and 2 were considered to be at a distinct and specific level of differentiation (16.11%), while two types of R. rugosa were suspected to be at a subspecific level (8.47%).

  • PDF

Positive Regulation of Pyoluteorin Biosynthesis in Pseudomonas sp. M18 by Quorum-Sensing Regulator VqsR

  • Huang, Xianqing;Zhang, Xuehong;Xu, Yuquan
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.828-836
    • /
    • 2008
  • The biocontrol rhizobacterium Pseudomonas sp. M18 can produce two kinds of antibiotics, namely pyoluteorin (Plt) and phenazine-1-carboxylic acid (PCA), and is antagonistic against a number of soilborne phytopathogens. In this study, a luxR-type quorum-sensing regulatory gene, vqsR, was identified and characterized immediately downstream of the Plt gene cluster in strain MI8. A vqsR-inactivated mutant led to a significant decrease in the production of Plt and its biosynthetic gene expression. However, this was restored when introducing the vqsR gene by cloning into the plasmid pME6032 in trans. The vqsR mutation did not exert any obvious influence on the production of PCA and its biosynthetic gene expression and the production of N-acylhomoserine lactones (C4 and C8-HSLs) and their biosynthetic gene rhlI expression. Accordingly, these results introduce VqsR as a regulator of Plt production in Pseudomonas spp., and suggest that the regulatory mechanism of vqsR in strain M18 is distinct from that in P. aeruginosa. In addition, it was demonstrated that vqsR mutation did not have any obvious impact on the expression of Plt-specific ABC transporters and other secondary metabolic global regulators, including GacA, RpoS, and RsmA.

Localization of a Human-Specific Retroposon (SINE-R.C2) to Chromosome 6p21.31 by Radiation Hybrid Mapping

  • Kim, Heui-Soo;Timothy J. Crow
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.12-13
    • /
    • 2000
  • A human-specific retroposon SINE-R.C2 has been derived from a human endogenous retrovirus HER V-K 10. It is absent in the genome of nonhuman primates and present within the third intron of the human C2 gene that is located in the class III region of the major histocompatibility complex. In the present study, we determined the regional location of the human C2 gene. The analysis of the Genebridge 4 radiation hybrid mapping panel using PCR amplification located the C2 gene between D6S1422 (10.1 cR) and CHLC.GATA4A03 (21.3) with a lod score of>3.0. This allowed us to localize C2 gene on the human chromosome 6 band p21.31.

  • PDF

Identification of the Nitrifying Archaeal Phylotype Carrying Specific amoA Gene by Applying Digital PCR (디지털 PCR을 응용한 특정 amoA유전자를 가진 질산화 Archaea 동정)

  • Park, Byoung-Jun;Park, Soo-Je;Rhee, Sung-Keun
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.232-235
    • /
    • 2007
  • Mesophilic Crenarchaeota have been known to be predominant among ammonia-oxidizing microorganisms in terrestrial and marine environments. In this study, we determined the archaeal phylotypes carrying specific amoA by combining digital PCR and multiplex-nested PCR. Analysis of samples in which amoA and 16S rRNA gene were amplified showed that amoA gene diversity was relatively higher than that of 16S rRNA gene. Nitrifying archaeal group I.1a was dominant over I.1b group of crenarchaota and euryarchaeota. This approach could be applied for interrelating a functional gene to a specific phylotype in natural environments.

Cloning of 17S-Ribosomal RNA Gene from the Hygromycin Resistant Tetrahymena thermophila (Hygromycin내성 Tetrahymena thermophila의 17S-Ribosomal RNA유전자의 Cloning)

  • 홍용기
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.2
    • /
    • pp.133-137
    • /
    • 1986
  • 17S-ribosomal RNA gene from the hygromycin resistant protozoan Tetrahymena thermophila hmr 3 was cloned on E. coli vector pBR 322 as part of study to work the 17S-rRNA structure and the mechanism of hygromycin resistance. The 17S-rDNA was inserted into the Hind 111 site of pBR 322. The clones having recombinant plasmid were selected by the method of colony hybridization with a 17S-rDNA probe of wild type B1868. The orientation of 17S-rDNA insert was located near the tetracycline resistant gene of pBR 322 in a clone 5-19 with the recombinant plasmid.

  • PDF

Identification of Hanwoo and Holstein meat using MGB probe based real-time PCR associated with single nucleotide polymorphism (SNP) in Melanocortin 1 receptor (MC1R) gene (소 모색관련 MC1R 유전자의 SNP와 관련한 MGB probe에 기초한 real-time PCR을 이용한 한우육과 Holstein육의 판별)

  • Park, Sung-Do;Kim, Tae-Jung;Lee, Jae-Il
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.1
    • /
    • pp.25-28
    • /
    • 2005
  • The melanocortin 1 receptor (MC1R) plays an important role in regulation of melanin pigment synthesis within mammalian melanocytes. Mutations within the gene encoding MC1R have been shown to explain coat color variations within several mammalian species including cattle. To develope a rapid and accurate method for the identification of Hanwoo meat, we performed a single nucleotide polymorphism (SNP) analysis in Melanocortin 1 receptor (MC1R) gene using TaqMan$^{(R)}$ MGB probe-based real-time PCR. Two specific probes (one for Hanwoo and the other for Holstein and Black angus) were designed. At the 5' end of 2 TaqMan$^{(R)}$ MGB probes, 6-carboxyfluorescein (FAM) was labeled for Hanwoo, and VIC for Holstein and Black angus. As a result, Hanwoo samples showed FAM-positive signal only, whereas other samples showed VIC-positive. This result suggests that the TaqMan$^{(R)}$ MGB probe based real-time PCR technique would be very accurate, easy and reproducible method to discriminate between Hanwoo meat and Holstein/Black angus meat.

Transcriptional Analysis and Pap1-Dependence of the Unique Gene Encoding Thioredoxin Reductase from the Fission Yeast

  • Kang Hyun-Jung;Hong Sung-Min;Kim Byung-Chul;Kim Kyunghoon;Park Eun-Hee;Lim Chang-Jin
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • The unique gene encoding thioredoxin reductase (TrxR) was previously cloned and characterized from the fission yeast Schizosaccharomyces pombe, and its expression was induced by oxidative stress. To elucidate tbe regulatory mechanism of the S. pombe TrxR gene, three fusion plasmids were generated using polymerase chain reaction: pYUTR20, pYUTR30, and pYUTR40. Plasmid pYUTR20 has an upstream region of 891 base pairs, pYUTR30 has 499 in this region, and pYUTR40 has an 186 bp upstream region. Negatively acting sequence is located between $-1,526\;\~\;-891bp$ upstream of the gene. The upstream sequence, responsible for the induction of TrxR by menadione (MD), is situated on the $-499\;\~\;-186bp$ region, which is also required for TrxR induction by mercuric chloride. The same region also appeared to be required for Pap1-mediated transcriptional regulation of the TrxR gene, which contains the two plausible Papl binding sites, TTACGAAT and TTACGCGA. Consistently, basal and inducible expression of the TrxR gene was markedly lower in the Pap1-negative TP108-3C cells than in wild-type yeast cells. In summary, up-regulation of the S. pombe TrxR gene is mediated by Pap1 via the transcriptional motif(s) located on the $-499\;\~\;-186bp$ region.

Analysis of Disease Progression-Associated Gene Expression Profile in Fibrillin-1 Mutant Mice: New Insight into Molecular Pathogenesis of Marfan Syndrome

  • Kim, Koung Li;Choi, Chanmi;Suh, Wonhee
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.143-148
    • /
    • 2014
  • Marfan syndrome (MFS) is a dominantly inherited connective tissue disorder caused by mutations in the gene encoding fibrillin-1 (FBN1) and is characterized by aortic dilatation and dissection, which is the primary cause of death in untreated MFS patients. However, disease progression-associated changes in gene expression in the aortic lesions of MFS patients remained unknown. Using a mouse model of MFS, FBN1 hypomorphic mouse (mgR/mgR), we characterized the aortic gene expression profiles during the progression of the MFS. Homozygous mgR mice exhibited MFS-like phenotypic features, such as fragmentation of elastic fibers throughout the vessel wall and were graded into mgR1-4 based on the pathological severity in aortic walls. Comparative gene expression profiling of WT and four mgR mice using microarrays revealed that the changes in the transcriptome were a direct reflection of the severity of aortic pathological features. Gene ontology analysis showed that genes related to oxidation/reduction, myofibril assembly, cytoskeleton organization, and cell adhesion were differentially expressed in the mgR mice. Further analysis of differentially expressed genes identified several candidate genes whose known roles were suggestive of their involvement in the progressive destruction of aorta during MFS. This study is the first genome-wide analysis of the aortic gene expression profiles associated with the progression of MFS. Our findings provide valuable information regarding the molecular pathogenesis during MFS progression and contribute to the development of new biomarkers as well as improved therapeutic strategies.