• Title/Summary/Keyword: R-carvone

검색결과 6건 처리시간 0.021초

소나무과 식물이 지닌 Monoterpenes가 Escherichia coli와 Aspergillus nidulans의 성장저해에 미치는 영향 (Antimicrobial Activity of the Monoterpenes of Pinus Plants on Escherichia coli and Aspergillus nidulans)

  • 이은주;김종희
    • The Korean Journal of Ecology
    • /
    • 제25권5호
    • /
    • pp.353-358
    • /
    • 2002
  • 소나무과 식물(곰솔, 리기다소나무 및 소나무)이 지닌 monoterpene의 표준시약 12가지를 4가지 농도별로 Escherichia coli와 Aspergillus nidulans에 처리하여 성장 저해 효과를 조사하였다. E. coli의 성장 저해 효과가 있는 것들은 (R)(-)carvone, (S)(+)carvone, (1R)(-)fenchone, (-)menthone, α-pinene, (1S)(-)verbenone 그리고 (+)β-pinene이었고, 이들 중에서 가장 높은 성장 저해 효과를 보이는 것은 (+)β-pinene이었다. 그리고 A. nidulans에 성장 저해 효과를 보이는 것들은 (R)(-)carvone, (S)(+)carvone, (+)β-pinene, geranyl-acetate, α-pinene 그리고 (1S)(-)verbenone이었다. 본 실험에서 A. nidulans에 성 장 저해 효과를 나타내는 monoterpene은 대부분 E. coli에서도 저해효과를 보이는데, 다만 geranyl-acetate는 E. coli에서는 전혀 영향을 미치지 않는 것으로 나타났다. 또한 (1R)(-)fenchone과 (-)menthone은 E. coli의 성장 억제를 하는 반면. A. nidulans의 성장에는 영향이 없었다. 특히 주목할 만한 점은 myrcene, sabinene, bornyl acetate 그리고 limonene의 경우 두 종 모두에서 성장 저해 효과가 전혀 나타나지 않았다.

다엽의 5가지 페놀성분과 R-(-)-carvone의 치아우식균 Mutans Streptococci에 대한 항균력 상승효과 (Antimicrobial synergism of Camellia sinensis-isolated five phenol compounds and R-(-)-carvone against mutans streptococci)

  • 송옥희;강옥화;문수현;김민철;한영선;최성훈;이영섭;권동렬
    • 대한본초학회지
    • /
    • 제31권5호
    • /
    • pp.7-13
    • /
    • 2016
  • Objectives : Camellia sinensis (Theaceae) possesses a various beneficial effects such as free radical-scavenging, inactivation of urokinase in cancer cell proliferation, antibacterial, and hypotensive. Dental caries is one of the most common oral infectious disease in a human. Oral microorganisms play a significant role in the etiology of dental caries. An aberration to this ecology due to dietary habits, improper oral hygiene or systemic factors lead to an increase in cariogenic microorganisms. Cariogenic microorganisms like Streptococcus mutans and Streptococcus sobrinus encourage the accumulation and adherence of plaque biofilm by metabolizing sucrose into glucans. The purpose of this study was to investigate the antimicrobial activity of phenolic compounds of Camellia sinensis and R-carvone, monoterpenes, is can be found naturally in numerous essential oils, on Streptococcus mutans and Streptococcus sobrinus .Methods : The antimicrobial activity of these compounds was determined by the broth microdilution method and checkerboard dilution assay to investigate the potential synergistic effects of each five compounds of Camellia sinensis (C. sinensis) and R-carvone.Results : C. sinensis-isolated compounds and R-carvone were determined with MIC of more than 1,000 ㎍/mL. However, the combination test showed significant synergism against S. mutans and S. sobrinus, implicated in the lowered MICs.Conclusions : These results suggest that combinatory application of phenolic five compounds (theophyllin, l-theanine, epicatechin, epicatechin gallate, and caffeine) from C. sinensis and R-carvone has a potential synergistic effect and thus may be useful as a mouthrinse in helping control cariogenic microorganism.

Induction by Carvone of the Polychlorinated Biphenyl (PCB)-Degradative Pathway in Alcaligenes eutrophus H850 and Its Molecular Monitoring

  • Park, Young-In;So, Jae-Seong;Koh, Sung-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권6호
    • /
    • pp.804-810
    • /
    • 1999
  • There is a possibility that carvone, a monoterpene from spearmint (Mentha spicata), could induce the bph degradative pathway and genes in Alcaligenes eutrophus H850, which is a known Gram-negative PCB degrader with a broad substrate specificity that was thoroughly investigated with Arthrobacter sp. BIB, a Gram-positive PCB degrader. The strains BIB and H850 were unable to utilize and grow on the plant terpene [(R)-(-)-carvone] (50ppm) to be recognized as a sole carbon source. Nevertheless, the carvone did induce 2,3-dihydroxybiphenyl 1,2-dioxygenase (encoded by bphC) in the strain B lB, as observed by a resting cell assay that monitors accumulation of a yellow meta ring fission product from 4,4'-dichlorobiphenyl (DCBp). The monoterpene, however, did not appear to induce the meta cleavage pathway in the strain H850. Instead, an assumption was made that the strain might be using an alternative pathway, probably the ortho-cleavage pathway. A reverse transcription (RT)-PCR system, utilizing primers designed from a conserved region of the bphC gene of Arthrobacter sp. M5, was employed to verify the occurrence of the alternative pathway. A successful amplification (182bp) of mRNA transcribed from the N-terminal region of the bphC gene was accomplished in H850 cells induced by carvone (50ppm) as well as in biphenyl-growth cells. It is, therefore, likely that H850 possesses a specific PCB degradation pathway and hence a different substrate specificity compared with B1B. This study will contribute to an elucidation of the dynamic aspects of PCB bioremediation in terms of roles played by PCB degraders and plant terpenes as natural inducer substrates that are ubiquitous and environmentally compatible.

  • PDF

A Multivariate Statistical Approach to Comparison of Essential Oil Composition from Three Mentha Species

  • Park, Kuen-Woo;Kim, Dong-Yi;Lee, Sang-Yong;Kim, Jun-Hong;Yang, Dong-Sik
    • 원예과학기술지
    • /
    • 제29권4호
    • /
    • pp.382-387
    • /
    • 2011
  • The chemical composition of essential oils obtained from aerial parts in spearmint, apple mint and chocolate mint, was investigated by gas chromatography/mass spectrometry analyses. (-)-Carvone (33.0%) was quantitatively major compound in spearmint, followed by R-(+)-limonene (11.7%) and ${\beta}$-phellandrene (9.7%); (-)-carvone (37.4%) and germacrene D (11.9%) in apple mint; and (-)-menthol (34.3%), p-menthone (18.4%) and menthofuran (9.8%) in chocolate mint. Hierarchical cluster analysis and principle components analysis showed the clear difference in chemical composition of the three mint oils.

Earthworm Enhanced Bioaugmentation of PCB Contaminated Soil

  • Crowley, David E.;Luepromchai, Ekawan;Singer, Andrew S.;Yang, Chang Sool
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2000년도 Proceedings of 2000 KSAM International Symposium and Spring Meeting
    • /
    • pp.100-107
    • /
    • 2000
  • In a recently developed strategy for in-situ treatment of polychlorinated biphenyls (PCB), bioaugmentation was used in conjunction with a surfactant, sorbitan trioleate, as a carbon source for the degrader bacteria, along with the monoterpene, carvone, and salicylic acid as inducing substrates. Two bacteria were used for soil inoculants, including Arthrobacter sp. st. B1B and Ralstonia eutrophus H850. This methodology achieved 60% degradation of PCBs in Aroclor 1242 after 18 weeks in soils receiving 34 repeated applications of the degrader bacteria. However, an obvious limitation was the requirement for soil mixing after every soil inoculation. In the research reported here, bioaugmentation and biostimulation treatment strategies were modified by using the earthworm, Pheretima hawayana, as a vector for dispersal and mixing of surface-applied PCB-degrading bacteria and soil chemical amendments. Changes in microbial biomass and microbial community structure due to earthworm effects were examined using DNA extraction and PCR-DGGE of 16S rDNA. Results showed that earthworms effectively promoted biodegradation of PCBs in bioaugmented soils to the same extent previously achieved using physical soil mixing, and had a lesser, but significant effect in promoting PCB biodegradation in biostimulated soils treated with carvone and salicylic acid. The effects of earthworms were speculated to involve many interacting factors including increased bacterial transport to lower soil depths, improved soil aeration, and enhanced microbial activity and diversity.

  • PDF

Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis - Black cumin and cancer -

  • Mollazadeh, Hamid;Afshari, Amir R.;Hosseinzadeh, Hossein
    • 대한약침학회지
    • /
    • 제20권3호
    • /
    • pp.158-172
    • /
    • 2017
  • Nigella sativa (N. sativa, family Ranunculaceae) is a medicinal plant that has been widely used for centuries throughout the world as a natural remedy. A wide range of chemical compounds found in N. sativa expresses its vast therapeutic effects. Thymoquinone (TQ) is the main component (up to 50%) in the essential oil of N. sativa. Also, pinene (up to 15%), p-cymene (40%), thymohydroquinone (THQ), thymol (THY), and dithymoquinone (DTQ) are other pharmacologically active compounds of its oil. Other terpenoid compounds, such as carvacrol, carvone, 4-terpineol, limonenes, and citronellol, are also found in small quantities in its oil. The main pharmacological characteristics of this plant are immune system stimulatory, anti-inflammatory, hypotensive, hepatoprotective, antioxidant, anti-cancer, hypoglycemic, anti-tussive, milk production, uricosuric, choleretic, anti-fertility, and spasmolytic properties. In this regard, we have searched the scientific databases PubMed, Web of Science, and Google Scholar with keywords of N. sativa, anti-cancer, apoptotic effect, antitumor, antioxidant, and malignancy over the period from 2000 to 2017. The effectiveness of N. sativa against cancer in the blood system, kidneys, lungs, prostate, liver, and breast and on many malignant cell lines has been shown in many studies, but the molecular mechanisms behind that anti-cancer role are still not clearly understood. From among the many effects of N. sativa, including its anti-proliferative effect, cell cycle arrest, apoptosis induction, ROS generation, anti-metastasis/anti-angiogenesis effects, Akt pathway control, modulation of multiple molecular targets, including p53, p73, STAT-3, PTEN, and $PPAR-{\gamma}$, and activation of caspases, the main suggestive anti-cancer mechanisms of N. sativa are its free radical scavenger activity and the preservation of various anti-oxidant enzyme activities, such as glutathione peroxidase, catalase, and glutathione-S-transferase. In this review, we highlight the molecular mechanisms of apoptosis and the anti-cancer effects of N. sativa, with a focus on its molecular targets in apoptosis pathways.