• Title/Summary/Keyword: R-러닝

Search Result 353, Processing Time 0.029 seconds

Optimal Parameter Extraction based on Deep Learning for Premature Ventricular Contraction Detection (심실 조기 수축 비트 검출을 위한 딥러닝 기반의 최적 파라미터 검출)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1542-1550
    • /
    • 2019
  • Legacy studies for classifying arrhythmia have been studied to improve the accuracy of classification, Neural Network, Fuzzy, etc. Deep learning is most frequently used for arrhythmia classification using error backpropagation algorithm by solving the limit of hidden layer number, which is a problem of neural network. In order to apply a deep learning model to an ECG signal, it is necessary to select an optimal model and parameters. In this paper, we propose optimal parameter extraction method based on a deep learning. For this purpose, R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval segment is modelled. And then, the weights were learned by supervised learning method through deep learning and the model was evaluated by the verification data. The detection and classification rate of R wave and PVC is evaluated through MIT-BIH arrhythmia database. The performance results indicate the average of 99.77% in R wave detection and 97.84% in PVC classification.

A Study on Application Scheme of E-Learning Contents in Smart Environments (스마트 환경에서 이러닝 콘텐츠 적용 방안에 관한 연구)

  • Lim, Ji-yong;Heo, Sung-Uk;Jeon, Jae-Hwan;Kim, Gwan-Hyung;Oh, Am-Suk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.423-425
    • /
    • 2014
  • 스마트기기의 발달과 보급의 확산과 함께 모바일 인터넷 등 통신서비스 환경이 발전함에 따라 이러닝 환경의 고도화가 진행되면서 유비쿼터스러닝, 모바일러닝을 넘어 스마트 디바이스와 이러닝 연관 신기술이 융 복합된 새로운 형태의 교육 시스템인 스마트러닝으로 발전하고 있다. 하지만 현재 다양한 스마트 디바이스 기반의 스마트러닝 서비스를 통해 교육 콘텐츠를 학습자에게 제공하기 위해서는 기존 이러닝 콘텐츠의 구조 개선이 불가피한 상황이며 콘텐츠의 재사용 가능성, 접근성, 상호운용성, 항구성 및 질적 수월성의 향상을 위한 스마트러닝 표준화가 요구되고 있다. 이에 본 논문에서는 기존 이러닝 콘텐츠를 통한 스마트러닝을 구현하기 위한 방안으로 EPUB 3.0 표준을 활용한 스마트러닝 솔루션을 제안하고자 한다.

  • PDF

A novel on Data Prediction Process using Deep Learning based on R (R기반의 딥 러닝을 이용한 데이터 예측 프로세스에 관한 연구)

  • Jung, Se-hoon;Kim, Jong-chan;Park, Hong-joon;So, Won-ho;Sim, Chun-bo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.421-422
    • /
    • 2015
  • Deep learning, a deepen neural network technology that demonstrates the enhanced performance of neural network analysis, has been getting the spotlight in recent years. The present study proposed a process to test the error rates of certain variables and predict big data by using R, a analysis visualization tool based on deep learning, applying the RBM(Restricted Boltzmann Machine) algorithm to deep learning. The weighted value of each dependent variable was also applied after the classification of dependent variables. The investigator tested input data with the RBM algorithm and designed a process to detect error rates with the application of R.

  • PDF

Deep Learning-Based Pressure Ulcer Image Object Detection Study (딥러닝 기반 욕창 이미지 객체 탐지 연구)

  • Seo, Jin-Beom;Lee, Jae-Seong;Yu, Ha-Na;Cho, Young-Bok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.311-312
    • /
    • 2022
  • 본 논문에서는 딥러닝 기반 욕창 감지를 위한 욕창 객체 탐지를 연구한다. 객체 탐지 딥러닝 기법으로 RCNN, Fast R-CNN, Faster R-CNN, YOLO 등 다양한 기법이 존재하며, 각 모델의 특징 또한 다르다. 욕창은 단계별로 피부, 조직에 손상의 정도가 다르다. 낮은 단계의 경우 일반적인 피부색과 유사하게 나타나며, 높은 단계의 경우 근육, 뼈, 지지 조직 등의 괴사로 인해 삼출물 또는 괴사조직이 나타난다. 논문에서는 One-Stage Detection 기법인 YOLO를 기반으로 욕창 이미지 내부에서 욕창 탐지를 진행한다. 현재 보유하고 있는 이미지 데이터 수가 많지 않아 데이터 증강기법을 통해 데이터를 증강하여 학습에 활용하였다.

  • PDF

Application of deep learning technique for battery lead tab welding error detection (배터리 리드탭 압흔 오류 검출의 딥러닝 기법 적용)

  • Kim, YunHo;Kim, ByeongMan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.71-82
    • /
    • 2022
  • In order to replace the sampling tensile test of products produced in the tab welding process, which is one of the automotive battery manufacturing processes, vision inspectors are currently being developed and used. However, the vision inspection has the problem of inspection position error and the cost of improving it. In order to solve these problems, there are recent cases of applying deep learning technology. As one such case, this paper tries to examine the usefulness of applying Faster R-CNN, one of the deep learning technologies, to existing product inspection. The images acquired through the existing vision inspection machine are used as training data and trained using the Faster R-CNN ResNet101 V1 1024x1024 model. The results of the conventional vision test and Faster R-CNN test are compared and analyzed based on the test standards of 0% non-detection and 10% over-detection. The non-detection rate is 34.5% in the conventional vision test and 0% in the Faster R-CNN test. The over-detection rate is 100% in the conventional vision test and 6.9% in Faster R-CNN. From these results, it is confirmed that deep learning technology is very useful for detecting welding error of lead tabs in automobile batteries.

Exploring the Factors Influencing Students' Career Maturity in Seoul City Middle School: A Machine Learning (머신러닝을 활용한 서울시 중학생 진로성숙도 예측 요인 탐색)

  • Park, Jung
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.155-170
    • /
    • 2020
  • The purpose of this study was to apply machine learning techniques (Decision Tree, Random Forest, XGBoost) to data from the 4th~6th year of the Seoul Education Longitudinal Study to find the factors predicting the career maturity of middle school students in Seoul city. In order to evaluate the machine learning application result, the performance of the model according to the indicators was checked. In addition, the model was analyzed using the XGBoostExplainer package, and R and R Studio tools were used for this study. As a result, there was a slight difference in the ranking of variable importance by each model, but the rankings were high in 'Achievement goal awareness', 'Creativity', 'Self-concept', 'Relationship with parents and children', and 'Resilience'. In addition, using the XGBoostExplainer package, it was found that the factors that protect and deteriorate career maturity by panel and 'Achievement goal awareness' is the top priority factor for predicting career maturity. Based on the results of this study, it was suggested that a comparative study of machine learning and variable selection methods and a comparative study of each cohort of the Seoul Education Termination Study should be conducted.

The Effect of Teaching Nursing Process with Action Learning on Critical Thinking Disposition, Self-Leadership, and Self-Directed Learning Ability. (액션러닝 적용 간호과정 교육이 비판적 사고성향, 셀프리더십, 자기주도적 학습능력에 미치는 효과)

  • Lee, Eun-Mi;Oh, Yun-Jeong
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.47-52
    • /
    • 2022
  • The purpose of this study is to confirm the effect of nursing process education applying action learning on the critical thinking tendency, self-leadership, and self-directed learning ability of nursing college students. A total of 96 subjects were studied, and data collection was from September to December 2021. For data analysis, the frequency, percentage, and corresponding sample t-test were used using spss/win 23. Results show that self-directed learning ability(t=-3.76, p<.001) was significantly improved. In addition, critical thinking disposition and self-leadership(r=.730, p<.001), critical thinking disposition and self-directed learning ability (r=.701, p<.001), self-leadership and self-directed learning ability(r=.734 p<.001) had a statistically significant positive correlation between them. As a result of this study, it can be seen that the nursing course education applied to action learning has a positive effect on the self-directed learning ability of nursing college students. In the future, research is needed to confirm the effects of various teaching and learning methods.

Rear-Approaching Vehicle Detection Research using Region of Interesting based on Faster R-CNN (Faster R-CNN 기반의 관심영역 유사도를 이용한 후방 접근차량 검출 연구)

  • Lee, Yeung-Hak;Kim, Joong-Soo;Shim, Jae-Chnag
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.235-241
    • /
    • 2019
  • In this paper, we propose a new algorithm to detect rear-approaching vehicle using the frame similarity of ROI(Region of Interest) based on deep learning algorithm for use in agricultural machinery systems. Since the vehicle detection system for agricultural machinery needs to detect only a vehicle approaching from the rear. we use Faster R-CNN model that shows excellent accuracy rate in deep learning for vehicle detection. And we proposed an algorithm that uses the frame similarity for ROI using constrained conditions. Experimental results show that the proposed method has a detection rate of 99.9% and reduced the false positive values.

Construction of Faster R-CNN Deep Learning Model for Surface Damage Detection of Blade Systems (블레이드의 표면 결함 검출을 위한 Faster R-CNN 딥러닝 모델 구축)

  • Jang, Jiwon;An, Hyojoon;Lee, Jong-Han;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.80-86
    • /
    • 2019
  • As computer performance improves, research using deep learning are being actively carried out in various fields. Recently, deep learning technology has been applying to the safety evaluation for structures. In particular, the internal blades of a turbine structure requires experienced experts and considerable time to detect surface damages because of the difficulty of separation of the blades from the structure and the dark environmental condition. This study proposes a Faster R-CNN deep learning model that can detect surface damages on the internal blades, which is one of the primary elements of the turbine structure. The deep learning model was trained using image data with dent and punch damages. The image data was also expanded using image filtering and image data generator techniques. As a result, the deep learning model showed 96.1% accuracy, 95.3% recall, and 96% precision. The value of the recall means that the proposed deep learning model could not detect the blade damages for 4.7%. The performance of the proposed damage detection system can be further improved by collecting and extending damage images in various environments, and finally it can be applicable for turbine engine maintenance.

Study on Water Quality Predictability through Machine Learning Techniques in Non-point Pollutant Management Area (비점오염원관리지역의 머신러닝 기법을 통한 수질 예측 가능성 연구)

  • Yeong Na Yu;Min Hwan Shin;Dong Hyuk Kum;Kyoung Jae Lim;Jong Gun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.467-467
    • /
    • 2023
  • 강우에 의해 발생하는 비점오염물질의 수질 데이터가 충분하지 않아 비점오염원이 문제가 되고 있는 유역의 수질개선을 위한 대책마련이 어려운 실정이다. 기존에 환경부에서 운영하고 있는 자동측정망은 1시간 간격으로 데이터를 축적하고 있으나, 비점오염원이 문제가 되는 유역에 설치되어 있지 않거나 수온, DO, pH 등 현장항목만을 측정하고 있어 하천의 수질오염을 대표할 수 있는 T-P나 SS 등의 수질분석 항목의 부재하다. 이로인해 유역의 수질개선 대책을 수립하기 위한 오염원의 현황을 파악하기 어려운 실정이다. 따라서, 본 연구에서는 비점오염원관리지역 중 골지천 유역을 대상으로 수질항목별 상관성을 분석하고, 실측자료를 기반으로 DT, MLP, SVM, RF, GB, XGB 등의 머신러닝 기법을 통해 수질 예측 가능성을 연구하였다. 상관관계 분석결과 입력변수인 탁도 항목이 예측 수질과 뚜렷한 상관관계를 보이는 것으로 나타났으나, 그 외 항목에서는 약한 상관관계를 보이거나 상관관계가 없는 것으로 나타났다. 머신러닝 기법을 활용한 수질 예측 분석 결과, 검무교와 태봉2교, 제1여량교는 RF 기법에서 결정계수(R2) 0.57~0.86, RMSE 16.49~175.60으로 예측성이 우수한 것으로 나타났다. 관말교는 SVM 기법에서 R2 0.65, RMSE 57.69로, 송계교는 XGB 기법에서 R2 0.74, RMSE 282.86으로 가장 예측성이 우수한 것으로 나타났다. 분석결과와 같이 머신러닝 기법을 활용한 수질 예측은 가능하나, 예측성이 우수한 머신러닝 기법의 R2 비교 결과, 유역면적이 큰 제1여량교와 작은 관말교에서 0.57과 0.65로 다른 지점에 비해 낮은 것으로 나타났다. RMSE 비교 결과, 상류 산간지역에 발생한 국지성 호우의 영향으로 흙탕물이 가장 자주 발생하는 태봉2교 지점과 우선관리지역이 합류되는 송계교 지점에서 175.60과 282.86으로 예측값과 실측값의 오차가 큰 것으로 나타났다. 연구결과와 같이 하천 수질을 예측하기 위해서는 유역면적 혹은 유역특성과 관련한 기초자료를 추가로 적용하여 머신러닝 기법을 적용 해야할 것으로 판단된다. 또한, 본 연구에서 예측한 수질 항목 이외에 입력변수를 추가로 확보하여 수질의 예측 가능성을 검토해야 할 것으로 보여진다.

  • PDF