• Title/Summary/Keyword: R/C beam

Search Result 349, Processing Time 0.027 seconds

Finite Element Analysis of the Reinforced Concrete Circular (탄성적으로 지지된 철근콘크리트 선형판의 유한요소 해석)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.1
    • /
    • pp.59-66
    • /
    • 1993
  • Ring Sector Plate Supported by Elastic Beam Although all the reinforced concrete circular ring sector plates are elastically supported, it is conventional to simplify their supporting conditions as fixed or simply-supported ones assuming that their supporting beam has infinite stiffness. However, in order to obtain a precise solution, it should be required to consider the stiffness of their supporting beam. As a methodological improvement to the precise analysis, "Reinforced Concrete Model" previously developed by the author was applied to the structural analysis of the reinforced concrete circular ring sector plates with elastically supported beam. The results of analysis in the cases under various conditions of open angle, steel ratio, relative stiffness(EI/DL) between plate and supporting beam were summarized as follows ; 1.Although the effect of relative stiffness between plate and supporting beam varies depending on the magnitude of open angle, in general, it shows the largest when not more than 5.0 and negligible when not less than 10.0. Therefore, it would be considered as fixed supporting condition :in the case of its open angle of 0$^{\circ}$rectangular plates), its stiffness ratio being not less than 10.0 and in the other case of its open angle of 30$^{\circ}$, its stiffness ratio being not less than 5.0. 2.In the rectangular plates, the effect of steel ratio is considerable in no supporting condition, but neglible in the supporting condition. So, the effect of steel ratio should be negligible in the case of the elastically supported circular ring sector plates. 3.However, the effect of steel ratio is much more considerable in the case of the fixed supported circular plates, especially, when steel ratio being not more than 1.0% and stiffness ratio being smaller. So, the effect of steel ratio should be considered in the analysis of reinforced concreate circular ring sector plates with fixed conditions. 4.The effect of open angle is greater in the case of without-supporting beam conditions. However, in the other case of with-supporting beam conditions, the effect is a little bit when open angle of not more than 300 and negligible when open angle of not more than 30$^{\circ}$.

  • PDF

Construction of laser induced grating spectrometer and measurement of thermal grating in $C_3H_8$ flame (레이저 유도 격자 분광장치 제작 및 $C_3H_8$화염에서 열 격자 측정)

  • 박철웅;한재원;이중재;이영우;고동섭
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.6
    • /
    • pp.446-451
    • /
    • 2001
  • We made a laser induced grating spectrometer(LIGS) and measured the thermal grating signal generated in a $C_3$ $H_{8}$ flame. The thermal grating was formed in the C7Ha flame with two second-harmonic Nd:YAG pulse laser beams, and an LIGS signal was generated by Bragg scattering of a probe laser beam A $r^+.laser(488 nm). We found the modulation period of the signal depends linearly on the spacing of the grating set in the flame. We determined flame temperature by fitting the modulated signal and soot concentration with signal strength. Using this technique, we also obtained temperature profile and soot-particle distribution in a $C_3$ $H_{8}$ flame .e .

  • PDF

Development of a Measurement System for Axial-symmetric Objects Using Vision Sensor (시각센서를 이용한 축대칭 물체 측정 시스템 개발)

  • Lee, S.R.;Kim, C.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.34-41
    • /
    • 1997
  • The dimension measurement problem of products has been a major concern in the quality control in the industrial fields. A non-contacting measurement system using the vision sensor is proposed in this paper. The system consists of a CCD camera for the image capture, a frame grabber for the acquired image processing, a laser unit for the illumination, scanning unit for the measurement, and a personal computer for the geometry computation. The slit beam which is generated by passing the laser beam through a cylin- drical lens is fired to the axial-symmetric object on the rotating plate. The image of objects reflected by the laser slit beam, acquired by the CCD camera, becomes much brighter than the other parts of objects. After the histogram of brightness for the captured image is calculated, low intensity pixels are filtered out by threshold method. The performance of proposed measurement system is obtained for several different axial symmetric objects. The proposed system is verified as a good tool for measuring axial-symmetric parts in a limited condition with a minor investment cost.

  • PDF

Modeling of cyclic bond deterioration in RC beam-column connections

  • Picon-Rodriguez, Ricardo;Quintero-Febres, Carlos;Florez-Lopez, Julio
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.569-589
    • /
    • 2007
  • This paper presents an analytical model for RC beam-column connections that takes into account bond deterioration between reinforcing steel and concrete. The model is based on the Lumped Damage Mechanics (LDM) theory which allows for the characterization of cracking, degradation and yielding, and is extended in this paper by the inclusion of the slip effect as observed in those connections. Slip is assumed to be lumped at inelastic hinges. Thus, the concept of "slip hinge", based on the Coulomb friction plasticity theory, is formulated. The influence of cracking on the slip behavior is taken into account by using two concepts of LDM: the effective moment on an inelastic hinge and the strain equivalence hypothesis. The model is particularly suitable for wide beam-column connections for which bond deterioration dominates the hysteretic response. The model was evaluated by the numerical simulation of five tests reported in the literature. It is found that the model reproduces closely the observed behavior.

In-situ electron beam growth of $YBa_2Cu_3O_{7-x}$ coated conductors on metal substrates

  • Jo, W.;Ohnishi, T.;Huh, J.;Hammond, R.H.;Beasley, M.R.
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.175-180
    • /
    • 2007
  • High temperature superconductor $YBa_2Cu_3O_{7-x}$ (YBCO) films have been grown by in-situ electron beam evaporation on artificial metal tapes such as ion-beam assisted deposition (IBAD) and rolling assisted biaxially textured substrates (RABiTS). Deposition rate of the YBCO films is $10{\sim}100{\AA}/sec$. X-ray diffraction shows that the films are grown epitaxially but have inter-diffusion phases, like as $BaZrO_3\;or\;BaCeO_3$, at their interfaces between YBCO and yttrium-stabilized zirconia (YSZ) or $CeO_2$, respectively. Secondary ion mass spectroscopy depth profile of the films confirms diffused region between YBCO and the buffer layers, indicating that the growth temperature ($850{\sim}900^{\circ}C$) is high enough to cause diffusion of Zr and Ba. The films on both the substrates show four-fold symmetry of in-plane alignment but their width in the -scan is around $12{\sim}15^{\circ}$. Transmission electron microscopy shows an interesting interface layer of epitaxial CuO between YBCO and YSZ, of which growth origin may be related to liquid flukes of Ba-Cu-O. Resistivity vs temperature curves of the films on both substrates were measured. Resistivity at room temperature is between 300 and 500 cm, the extrapolated value of resistivity at 0 K is nearly zero, and superconducting transition temperature is $85{\sim}90K$. However, critical current density of the films is very low, ${\sim}10^3A/cm^2$. Cracking of the grains and high-growth-temperature induced reaction between YBCO and buffer layers are possible reasons for this low critical current density.

  • PDF

Exterior Joint Behavior of Low-Rise Reinforced Concrete Frame with Non-Seismic Detail (비내진 상세를 가진 저층 R.C조의 외부접합부 거동)

  • 김영문;기찬호;장준호;이세웅;김상대
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.481-486
    • /
    • 1998
  • In this paper, elastic and inelastic behavior of exterior joint of moment-resisting R.C frame with non-seismic detail subjected to reversed cyclic lateral load such as earthquake excitations was investigated. 1/2-scals subassemblage exterior beam-column joint including slab was manufactured based on similitude law. Then, pseudo static test under the displacement control was performed. The results of 1)crack pattern and failure mode, 2)degradation stiffness and strength, energy dissipation capacity from load-displacement hysteresis curve, 3)strain of steel were analysed.

  • PDF

An Experimental Study on Shear Strengthening of the R/C Deep Beams Using Carbon and Aramid Fibers (탄소 및 아라미드섬유를 이용한 철근콘크리트 깊은 보의 전단보강에 관한 실험적 연구)

  • Jo, Byung-Wan;Kim, Young-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.56-64
    • /
    • 1999
  • An experimental study was carried out to examine the structural behavior of reinforced concrete deep beams strengthened with aramid fiber sheets, carbon fiber sheets and plates, and to propose the reasonable strengthening method for the deteriorated R.C. deep beams. Results show that the most significant differences in behavior of reinforced concrete deep beams strengthened with fiber sheet and plate were mainly due to various fiber orientations and anchorage. Deep beams diagonally strengthened with carbon fibers show better performance compared with those of vertically, horizontally strengthened specimens and produce the increase in the shear resistance through the redistribution of internal forces after the initial cracks occur. However, strengthened deep beams without anchorages might show unreasonable, brittle peeling-off failure of fiber reinforcements.

  • PDF

Flexural Rehabilitation Performance of Reinforced Concrete Beams Strengthened with Carbon Fiber Laminate (탄소섬유판을 이용한 철근콘크리트 보의 휨 보강 성능)

  • Chung, Lan;Kim, Sung-Chul;Lee, Hee-Kyoung;Yoo, Seong-Hoon;Kim, Joong-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.1
    • /
    • pp.121-128
    • /
    • 1999
  • In this study, the behavior of R/C beams strengthened with carbon fiber laminate (CFL) is analyzed from the test results. CFL is attractive for this application due to its good tensile strength and low weight. Test parameters are the width and the thickness of CFL and repair of damaged specimen. The failure mode and ultimate load are analyzed from these measured data. Test results show that the peak load of specimens strengthened with CFL is increased to 1.27~2.04 times that of non-rehabilitation specimen. The wider lap width, larger amount of CFL, the larger strength is obtained. But the ductile behavior of the rehabilitated specimens is inversely proportional to the CFL thickness.

  • PDF

Ultrahigh Vacuum Technologies Developed for a Large Aluminum Accelerator Vacuum System

  • Hsiung, G.Y.;Chang, C.C.;Yang, Y.C.;Chang, C.H.;Hsueh, H.P.;Hsu, S.N.;Chen, J.R.
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.309-316
    • /
    • 2014
  • A large particle accelerator requires an ultrahigh vacuum (UHV) system of average pressure under $1{\times}10^{-7}$ Pa for mitigating the impact of beam scattering from the residual gas molecules. The surface inside the beam ducts should be controlled with an extremely low thermal outgassing rate under $1{\times}10^{-9}Pa{\cdot}m^3/(s{\cdot}m^2)$ for the sake of the insufficient pumping speed. To fulfil the requirements, the aluminum alloys were adopted as the materials of the beam ducts for large accelerator that thanks to the good features of higher thermal conductivity, non-radioactivity, non-magnetism, precise machining capability, et al. To put the aluminum into the large accelerator vacuum systems, several key technologies have been developed will be introduced. The concepts contain the precise computer numerical control (CNC) machining process for the large aluminum ducts and parts in pure alcohol and in an oil-free environment, surface cleaning with ozonized water, stringent welding process control manually or automatically to form a large sector of aluminum ducts, ex-situ baking process to reach UHV and sealed for transportation and installation, UHV pumping with the sputtering ion pumps and the non-evaporable getters (NEG), et al. The developed UHV technologies have been applied to the 3 GeV Taiwan Photon Source (TPS) and revealed good results as the expectation. The problems of leakage encountered during the assembling were most associated with the vacuum baking which result in the consequent trouble shootings and more times of baking. Then the installation of the well-sealed UHV systems is recommended.

Stabilization of Nanoemulsion Using PEG-free Surfactant (PEG-free 계면활성제를 사용한 Nanoemulsion의 안정화)

  • Kim, Huiju;Jung, Taek Kyu;Kim, Ja Young;Yoon, Kyung-Sup
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.434-447
    • /
    • 2019
  • Polyethylene glycol (PEG) is widely used in cosmetics as a surfactant, detergent and emulsifier. During the manufacturing process, 1,4-dioxane, which is toxic to humans, can be produced as a by-product by dimerization of ethylene oxide. As consumers' interest in cosmetic ingredients has increased, the need for safe emulsion research without PEG ingredients in the personal care market has increased. With increasing consumer interest in cosmetic ingredients, the need for safer emulsion research without the PEG ingredient in the personal care market has increased. In this study, we aimed to develop and stabilize nanoemulsion formulation without PEG. Response Surface Methodology (RSM) was used to develop optimized nanoemulsion formulations. Surfactant content (2~4%), oil content (4~8%) and polyol content (12~24%) were set as independent variables as a result of preliminary experiments for determining independent variables and ranges. The particle size, zeta potential, turbidity, and polydispersity index of the formulation were measured as response variables. As a result of measurement of the prepared nanoemulsion by FIB (Focused ion beam), spherical particles were found to have a size distribution of 100 to 200 nm. The stability of each formulation was evaluated for 30 days at each temperature ($4^{\circ}C$, $25^{\circ}C$, and $45^{\circ}C$). The optimal formulation considering the optimum particle size, turbidity, polydispersity index and zeta potential was found to be surfactant (2%), oil (8%) and polyol (24%).