• Title/Summary/Keyword: R&D of Green Energy

Search Result 141, Processing Time 0.026 seconds

Synthesis and Characteristics of Type-II ZnO/ZnSe Core/Shell Heterostructures for High Efficient Photocatalytic Activity (Type-II ZnO/ZnSe 코어/쉘 이종 구조 합성 및 광촉매활성 평가)

  • Lee, Woo-Hyoung;Choi, Kwang-Il;Kang, Dong-Cheon;Beak, Su-Woong;Lee, Suk-Ho;Lim, Cheol-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.178-183
    • /
    • 2014
  • Recently, various type of nanomaterials such as nanorod, nanowire, nanotube and their core/shell nanostructures have attracted much attention in photocatalyst due to their unique properties. Among them, Type-II core/shell heterostructures have extensively studied because it has exhibited improved electrical and optical properties against their single-component nanostructure. Such structures are expected to offer high absorption efficiency and fast charge transport due to their stepwised energetic combination and large internal surface area. Thus, it has been considered as potential candidates for high efficient photocatalytic activity. In this work, we introduce a novel chemical conversion process to synthesize Type-II ZnO/ZnSe core/shell heterostructures. A plausible conversion mechanism to ZnO/ZnSe core/shell heterostructres was proposed based on SEM, XRD, TEM and XPS analysis. The ZnO/ZnSe heterostructures exhibited excellent photocatalytic activity toward the decomposition of RhB dye compared to the ZnO nanorod arrays due to enhanced light absorption and the type-II cascade band structure.

Fabrication of Shingled Design Bifacial c-Si Photovoltaic Modules (슁글드 디자인 고출력 양면수광형 단결정 실리콘 태양광 모듈 제작)

  • Park, Min-Joon;Kim, Minseob;Shin, Jinho;Byeon, Su-Bin;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2022
  • Bifacial photovoltaic (PV) technology has received considerable attention in recent years due to the potential to achieve a higher annual energy yield compared to its monofacial PV systems. In this study, we fabricated the bifacial c-Si PV module with a shingled design using the conventional patterned bifacial solar cells. The shingled design PV module has recently attracted attention as a high-power module. Compared to the conventional module, it can have a much more active area due to the busbar-free structure. We employed the transparent backsheet for a light reception at the rear side of the PV module. Finally, we achieved a conversion power of 453.9 W for a 1300 mm × 2000 mm area. Moreover, we perform reliability tests to verify the durability of our Shingled Design Bifacial c-Si Photovoltaic module.

Predicting the Effectiveness of National Energy R&D Investment in Korea: Application of System Dynamics

  • Oh, YoungMin
    • Korean System Dynamics Review
    • /
    • v.15 no.2
    • /
    • pp.27-50
    • /
    • 2014
  • Korea government established the energy technology development plan (2011-2020) and declared to be a leader of the green energy technologies. The plan aims for 10% market share in the green energy industry, 12% energy efficiency improvement, and 15% greenhouse gas reduction. In order to achieve these goals, the government has tried to calculate the whole scale of national energy R&D investment, annual budget and specific expenditures for new technologies by computer simulation. The simulation modules include the R&D investment model, GDP model, energy consumption and $CO_2$ emission model by System Dynamics. Based on these simulation modules, I tested various scenarios for effectiveness of energy R&D investments until 2020. The results show that Korea should increase national energy R&D investment to 2.3 billion U.S. dollars, and switch the investment from electricity and nuclear power to the renewable energy.

  • PDF

Fabrication of Lightweight Flexible c-Si Shingled Photovoltaic Modules for Building-Applied Photovoltaics (건물 부착형 고경량 유연성 슁글드 태양광 모듈)

  • Minseob, Kim;Min-Joon, Park;Jinho, Shin;Eunbi, Lee;Chaehwan, Jeong
    • Current Photovoltaic Research
    • /
    • v.10 no.4
    • /
    • pp.107-110
    • /
    • 2022
  • Lightweight and flexible photovoltaic (PV) modules are attractive for building-integrated photovoltaic (BIPV) applications because of their easy construction and applicability. In this study, we fabricated lightweight and flexible c-Si PV modules using ethylene tetrafluoroethylene (ETFE) front cover and shingled design string cells. The ETFE front cover instead of glass made the PV modules lighter in weight, and the shingled design string cells increased the flexibility. Finally, we fabricated a PV module with a conversion power of 240.08 W at an area of 1.25 m2 and weighed only 2 kg/m2. Moreover, to check the PV module's flexibility, we conducted a bending test. The difference of conversion power between the modules before and after bending shown was only 1.7 W, which showed a power reduction rate of about 0.7%.

Fabrication of Shingled Design Solar Module with Controllable Horizontal and Vertical Width (가로세로 폭의 제어가 가능한 슁글드 디자인 태양광 모듈 제조)

  • Min-Joon Park;Minseob Kim;Eunbi Lee;Yu-Jin Kim;Chaehwan Jeong
    • Current Photovoltaic Research
    • /
    • v.11 no.3
    • /
    • pp.75-78
    • /
    • 2023
  • Recently, the installation of photovoltaic modules in urban areas has been increasing. In particular, the demand for solar modules installed in a limited space is increasing. However, since the crystalline silicon solar module's size is proportional to the solar cell's size, it is difficult to manufacture a module that can be installed in a limited area. In this study, we fabricated a solar module with a shingled design that can control horizontal and vertical width using a bi-directional laser scribing method. We fabricated a string cell with a width of 1/5 compared to the existing shingled design string cells using a bi-directional laser scribing method, and we fabricated a solar module by connecting three strings in parallel. Finally, we achieved a conversion power of 5.521 W at a 103 mm × 320 mm area.

Fabrication of High-power Shingled PV Modules Integrated with Bent Steel Plates for the Roof (절곡 강판 일체형 고출력 슁글드 태양광 모듈 제조)

  • Eunbi Lee;Min-Joon Park;Minseob Kim;Jinho Shin;Sungmin Youn
    • Current Photovoltaic Research
    • /
    • v.11 no.2
    • /
    • pp.54-57
    • /
    • 2023
  • Recently, requirements for improving the convenience of constructing BIPV (Building Integrated Photo Voltaic) modules had increased. To solve this problem, we fabricated shingled PV modules integrated with bent steel plates for building integrated photovoltaics. These PV modules could be constructed directly on the roof without the installation structure. We found optimal lamination conditions with supporting structures to fabricate a module on a bent steel plate. Moreover, we applied a shingled design to PV modules integrated with bent steel plates to achieve a high electrical output power. The shingled module with bent steel plates shows 142.80 W of solar-to-power conversion in 0.785 m2 area.

Computer Simulation of Lower Farmland by the Composition of an Agrophotovoltaic System (영농형 태양광 발전 시스템 구성에 따른 하부 농지 일사량의 전산모사 연구)

  • Kim, DeokSung;Kim, ChangHeon;Park, JongSung;Kim, ChangHan;Nam, JaeWoo;Cho, JaiYoung;Lim, CheolHyun
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.41-46
    • /
    • 2020
  • The share of agrophotovoltaics in the "renewable energy 3020", which is the Korean government policy for revitalizing new and renewable energy, is increasing gradually. In this study, the distribution of solar radiation received by crops growing on virtual farmland under a range of conditions, such as module height, module angle, shading ratio, and module type, was quantified and analyzed using an Ecotect program, which allows insolation analysis during the period from spring to fall. As the module angle increases, transmissive modules increase the amount of solar radiation delivered to the lower farmland. In addition, the difference between 3x12 Cell Type and 4x9 Cells Type, which are types of photovoltaic modules used in practice, was found to be small. The analysis results can be used as a design standard for the future establishment of agrophotovoltaic systems.

Fabrication of Series Connected c-Si Solar Strap Cells for the See-through Type Photovoltaic Modules (See-through 형태의 투광형 태양광 모듈 제조를 위한 직렬접합형 스트랩 제조 기술)

  • Min-Joon Park;Sungmin Youn;Minseob Kim;Eunbi Lee;Kiseok Jeon;Chaehwan Jeong
    • Current Photovoltaic Research
    • /
    • v.11 no.4
    • /
    • pp.114-117
    • /
    • 2023
  • Transparent Photovoltaic (PV) modules have recently been in the spotlight because they can be applied to buildings and vehicles. However, crystalline silicon (c-Si) solar modules, which account for about 90% of the PV module market, have the disadvantage of applying transparent PV modules due to their unique opacity. Recently, a see-through type PV module using a crystalline silicon solar strap has been developed. However, there is a problem due to a decrease in aesthetics due to the metal ribbon in the center of the see-through type PV module and difficulty bonding the metal ribbon due to the low voltage output of the strap. In this study, to solve this problem, we developed a fabrication process of series connected c-Si solar strap cells using the c-Si solar cells. We succeeded in fabricating a series connected strap with a width of 2-10 mm, and we plan to manufacture an aesthetic see-through type c-Si PV module.

Characterization of Low-temperature Conductive Films Bonded PV Modules and Its Field Test (저온 전도성 필름으로 본딩된 태양광 모듈의 특성 평가 및 실증 연구)

  • Baek, Su-Wung;Choi, Kwang-Il;Lee, Suk-Ho;Cheon, Chan-Hyuk;Hong, Seung-Min;Lee, Kil-Song;Shin, Hyun-Woo;Yang, Yeon-Won;Lim, Cheol-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.189-194
    • /
    • 2014
  • In this paper, PV modules using a low-temperature conductive film(LT-CF) as a bonding material between a cell and a solder free ribbon were produced and chracterized, which is more environmental-friendly, cost effective and high efficient. Mainly, filed electrical performance of PV modules using three different types of bonding material; a convetional solder ribbon(SR), a LT-CF and a light-capturing Ribbon(LCR) were compared to comfirm the feasibility of LT-CF as a bonding material. The filed test were conducted for 3 months and results were discussed in terms of amount of output energy production and efficiency.

Analysis of R&D investment of waste reduce, recycle and energy recovery technology (폐기물 저감·재활용·에너지화 기술의 R&D 투자 현황 분석)

  • Hong, Jung Suk;Kim, Hyung-Gun
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.315-324
    • /
    • 2012
  • Waste reduce, recycle, energy recovery technology is one of 27 key green technology by 2012, the government should increase R&D investment, despite the period 2008 to 2010 average annual growth rate was decreased. Accordingly, this area of government investment in R&D status analyzed in detail and as a result, total government investment in R&D decreased, but in these fields to define strategic product services investment in technology is increasing centralization trend that appears to be investment in the quality of determined that the good is. In particular, in 2010, strategic product service of the technologies 3 technology groups ((1) waste energy equipment (2) waste resource recycling facilities (3) waste based materials production facilities) the proportion of 24-28% relatively evenly invested, government R&D is judged that adequate investment in quality.