• Title/Summary/Keyword: R&D input

Search Result 747, Processing Time 0.023 seconds

Emergency Brushless Synchronous Generator Having Rotating Exciter Status Monitoring and Protection Functions

  • Oh, Yongseung;Oh, Wonseok;Cho, Kyumin
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.2
    • /
    • pp.1-13
    • /
    • 2020
  • This paper presents an emergency brushless synchronous generator having rotating exciter status monitoring and protection functions. For monitoring the rotating exciter status, a wireless rotor status detector and a digital AVR(Automatic Voltage Regulator), which has a wireless communication capability, are proposed. The proposed rotor status detector detects temperatures of exciter armature and main field windings and input voltage and current of the main field. Therefore, it is possible to protect the generator from the over-temperature of windings and detect the exciter bridge diode fault. Furthermore, the proposed digital AVR has rotor status monitoring and protection function, and remote generator tuning, wireless group parallel operation function. So the operator can efficiently operate the generator using a smartphone from a remote area.

Cascaded Raman fiber amplifier operating at 1.3.mu.m using WDM couplers

  • Chang, Do-Il;Kong, Hong-Jin;Chernikov, S.V.;Guy, M.-J.;Taylor, J. R.
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.110-115
    • /
    • 1997
  • We report effcient cascaded Raman generation and signal amplification at 1.3.mu.m achieved in a ring resonator constructed solely from fiber components, i.e. fusion WDM couplers. Low-loss single-mode fiber with moderate $GeO_2$ content (18 mole %) is used as an active medium and pumped by a Nd:YAG laser at 1.064.mu.m. In a resonant cascaded geometry, this generates the third Stokes line at 1.24.mu.m, which acts as a pump for signal wavelength around 1.3.mu.m. A DFB laser operating at 1.315.mu.m is used to provide an input signal. An output signal powers up to 20 dBm (100 mW) with a 28 dB Raman gain are attained, where the Nd:YAG pump power is 3.4 W. It is also shown experimentally that it is important to use optical filters to suppress feedback from the resonator, permitting high Raman gain and good signal quality.

Fast Quadtree Based Normalized Cross Correlation Method for Fractal Video Compression using FFT

  • Chaudhari, R.E.;Dhok, S.B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.519-528
    • /
    • 2016
  • In order to achieve fast computational speed with good visual quality of output video, we propose a frequency domain based new fractal video compression scheme. Normalized cross correlation is used to find the structural self similar domain block for the input range block. To increase the searching speed, cross correlation is implemented in the frequency domain using FFT with one computational operation for all the domain blocks instead of individual block wise calculations. The encoding time is further minimized by applying rotation and reflection DFT properties to the IFFT of zero padded range blocks. The energy of overlap small size domain blocks is pre-computed for the entire reference frame and retaining the energies of the overlapped search window portion of previous adjacent block. Quadtree decompositions are obtained by using domain block motion compensated prediction error as a threshold to control the further partitions of the block. It provides a better level of adaption to the scene contents than fixed block size approach. The result shows that, on average, the proposed method can raise the encoding speed by 48.8 % and 90 % higher than NHEXS and CPM/NCIM algorithms respectively. The compression ratio and PSNR of the proposed method is increased by 15.41 and 0.89 dB higher than that of NHEXS on average. For low bit rate videos, the proposed algorithm achieve the high compression ratio above 120 with more than 31 dB PSNR.

MRC MMSE Equalization for SC-FDE in Amplify-and-Forward Relaying Networks (AF 방식 중계기 네트워크에서의 SC-FDE를 위한 MRC MMSE 등화 기법)

  • Won, Hui-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.19-26
    • /
    • 2011
  • Relay-assisted multiple input multiple output (MIMO) technique has become a promising candidate for next generation broadband wireless communications. In this paper, we propose maximum ratio combining (MRC) minimum mean-square-error (MMSE) equalization for single carrier-frequency domain equalizer (SC-FDE) in amplify-and-forward (AF) relaying networks. The performance of SC-FDE system can be improved considerably by achieving both the diversity gain and the MMSE equalization gain when the signals from source-destination (S->D) and source-relay-destination (S->R->D) are combined and equalized by means of the MMSE criteria. We find the weighting coefficients of MRC combining and the tap coefficients of MMSE equalizer for SC-FDE in AF relaying networks. Simulation results show that the proposed relay-based system considerably outperforms the conventional SC-FDE system.

Seismic response of a rigid foundation embedded in a viscoelastic soil by taking into account the soil-foundation interaction

  • Messioud, Salah;Sbartai, Badreddine;Dias, Daniel
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.887-903
    • /
    • 2016
  • This study analyses the seismic response of a three-dimensional (3-D) rigid massless square foundation resting or embedded in a viscoelastic soil limited by rigid bedrock. The foundation is subjected to harmonic oblique seismic waves P, SV, SH and R. The key step is the characterization of the soil-foundation interaction by computing the impedance matrix and the input motion matrix. A 3-D frequency boundary element method (BEM) in conjunction with the thin layer method (TLM) is adapted for the seismic analysis of the foundation. The dynamic response of the rigid foundation is solved from the wave equations by taking into account the soil-foundation interaction. The solution is formulated using the frequency BEM with the Green's function obtained from the TLM. This approach has been applied to analyze the effect of soilstructure interaction on the seismic response of the foundation as a function of the kind of incident waves, the angles of incident waves, the wave's frequencies and the embedding of foundation. The parametric results show that the non-vertical incident waves, the embedment of foundation, and the wave's frequencies have important impact on the dynamic response of rigid foundations.

Demosaicing based Image Compression with Channel-wise Decoder

  • Indra Imanuel;Suk-Ho Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.74-83
    • /
    • 2023
  • In this paper, we propose an image compression scheme which uses a demosaicking network and a channel-wise decoder in the decoding network. For the demosaicing network, we use as the input a colored mosaiced pattern rather than the well-known Bayer pattern. The use of a colored mosaiced pattern results in the mosaiced image containing a greater amount of information pertaining to the original image. Therefore, it contributes to result in a better color reconstruction. The channel-wise decoder is composed of multiple decoders where each decoder is responsible for each channel in the color image, i.e., the R, G, and B channels. The encoder and decoder are both implemented by wavelet based auto-encoders for better performance. Experimental results verify that the separated channel-wise decoders and the colored mosaic pattern produce a better reconstructed color image than a single decoder. When combining the colored CFA with the multi-decoder, the PSNR metric exhibits an increase of over 2dB for three-times compression and approximately 0.6dB for twelve-times compression compared to the Bayer CFA with a single decoder. Therefore, the compression rate is also increased with the proposed method than with the method using a single decoder on the Bayer patterned mosaic image.

Generative AI Technology Trends and Development Prospects for Digital Asset Creation (디지털 에셋 창작을 위한 생성형 AI 기술 동향 및 발전 전망)

  • K.S. Lee;S.W. Lee;M.S. Yoon;J.J. Yu;A.R. Oh;I.M. Choi;D.W. Kim
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.2
    • /
    • pp.33-42
    • /
    • 2024
  • With the recent rapid development of artificial intelligence (AI) technology, its use is gradually expanding to include creative areas and building new content using generative AI solutions, reaching beyond existing data analysis and reasoning applications. Content creation using generative AI faces challenges owing to technical limitations and other aspects such as copyright compliance. Nevertheless, generative AI may increase the productivity of experts and overcome barriers to creative work by allowing users to easily express their ideas as digital content. Thus, various types of applications will continue to emerge. As images and videos can be created using text input on a prompt, generative AI allows to create and edit digital assets quickly. We present trends in generative AI technology for images, videos, three-dimensional (3D) assets and scenes, digital humans, interactive content, and interfaces. In addition, the prospects for future technological development in this field are discussed.

Optimizing shallow foundation design: A machine learning approach for bearing capacity estimation over cavities

  • Kumar Shubham;Subhadeep Metya;Abdhesh Kumar Sinha
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.629-641
    • /
    • 2024
  • The presence of excavations or cavities beneath the foundations of a building can have a significant impact on their stability and cause extensive damage. Traditional methods for calculating the bearing capacity and subsidence of foundations over cavities can be complex and time-consuming, particularly when dealing with conditions that vary. In such situations, machine learning (ML) and deep learning (DL) techniques provide effective alternatives. This study concentrates on constructing a prediction model based on the performance of ML and DL algorithms that can be applied in real-world settings. The efficacy of eight algorithms, including Regression Analysis, k-Nearest Neighbor, Decision Tree, Random Forest, Multivariate Regression Spline, Artificial Neural Network, and Deep Neural Network, was evaluated. Using a Python-assisted automation technique integrated with the PLAXIS 2D platform, a dataset containing 272 cases with eight input parameters and one target variable was generated. In general, the DL model performed better than the ML models, and all models, except the regression models, attained outstanding results with an R2 greater than 0.90. These models can also be used as surrogate models in reliability analysis to evaluate failure risks and probabilities.

H-Plane 8-Way Rectangular Waveguide Power Divider Using Y-Junction (Y-Junction을 이용한 H-평면 8-Way 구형 도파관 전력 분배기)

  • Lee, Sang-Heun;Yoon, Ji-Hwan;Yoon, Young-Joong;Kim, Jun-Yeon;Lee, Woo-Sang;Park, Seul-Gi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.151-158
    • /
    • 2012
  • This paper proposes a H-plane 8-way rectangular waveguide power divider using Y-junction. A general N-way power divider can be composed of multi-stage T-junctions. However, if the distances of output ports are close, the matching characteristic is not improved by using only T-junctions because of space limitation. In this case, since other types of 3-port junctions should be used to final output stage, Y-junctions are used with T-junctions in this paper. The proposed Y-junction uses the tapered-line impedance transformer and inductive irises to improve impedance matching characteristic. The 8-way power divider using Y-junction is fabricated and measured. The measured return loss and insertion loss from input port to output port are -30.8 dB and -9.3 dB at operating frequency, respectively. The measured maximum phase difference is about $1^{\circ}$. Therefore, the proposed power divider will be useful to apply to various microwave systems, which need to divide the input power equally, such as feed networks for array antennas.

A Single-Bit 2nd-Order CIFF Delta-Sigma Modulator for Precision Measurement of Battery Current (배터리 전류의 정밀 측정을 위한 단일 비트 2차 CIFF 구조 델타 시그마 모듈레이터)

  • Bae, Gi-Gyeong;Cheon, Ji-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.184-196
    • /
    • 2020
  • In this paper, a single-bit 2nd-order delta-sigma modulator with the architecture of cascaded-of-integrator feedforward (CIFF) is proposed for precision measurement of current flowing through a secondary cell battery in a battery management system (BMS). The proposed modulator implements two switched capacitor integrators and a single-bit comparator with peripheral circuits such as a non-overlapping clock generator and a bias circuit. The proposed structure is designed to be applied to low-side current sensing method with low common mode input voltage. Using the low-side current measurement method has the advantage of reducing the burden on the circuit design. In addition, the ±30mV input voltage is resolved by the ADC with 15-bit resolution, eliminating the need for an additional programmable gain amplifier (PGA). The proposed a single-bit 2nd-order delta-sigma modulator has been implemented in a 350-nm CMOS process. It achieves 95.46-dB signal-to-noise-and-distortion ratio (SNDR), 96.01-dB spurious-free dynamic range (SFDR), and 15.56-bit effective-number-of-bits (ENOB) with an oversampling ratio (OSR) of 400 for 5-kHz bandwidth. The area and power consumption of the delta-sigma modulator are 670×490 ㎛2 and 414 ㎼, respectively.