• Title/Summary/Keyword: R&BD

Search Result 357, Processing Time 0.025 seconds

The growth of GaN on the metallic compound graphite substrate by HVPE (HVPE 방법에 의한 금속 화합물 탄소체 기판 위의 GaN 성장)

  • Kim, Ji Young;Lee, Gang Seok;Park, Min Ah;Shin, Min Jeong;Yi, Sam Nyung;Yang, Min;Ahn, Hyung Soo;Yu, Young Moon;Kim, Suck-Whan;Lee, Hyo Suk;Kang, Hee Shin;Jeon, Hun Soo;Sawaki, Nobuhiko
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.213-217
    • /
    • 2013
  • The GaN layer was typical III-V nitride semiconductor and was grown on the sapphire substrate which cheap and convenient. However, sapphire substrate is non-conductivity, low thermal conductivity and has large lattice mismatch with the GaN layer. In this paper, the poly GaN epilayer was grown by HVPE on the metallic compound graphite substrate with good heat dissipation, high thermal and electrical conductivity. We tried to observe the growth mechanism of the GaN epilayer grown on the amorphous metallic compound graphite substrate. The HCl and $NH_3$ gas were flowed to grow the GaN epilayer. The temperature of source zone and growth zone in the HVPE system was set at $850^{\circ}C$ and $1090^{\circ}C$, respectively. The GaN epilayer grown on the metallic compound graphite substrate was observed by SEM, EDS, XRD measurement.

Effects of PCB Surface Finishes on in-situ Intermetallics Growth and Electromigration Characteristics of Sn-3.0Ag-0.5Cu Pb-free Solder Joints (PCB 표면처리에 따른 Sn-3.0Ag-0.5Cu 무연솔더 접합부의 in-situ 금속간 화합물 성장 및 Electromigration 특성 분석)

  • Kim, Sung-Hyuk;Park, Gyu-Tae;Lee, Byeong-Rok;Kim, Jae-Myeong;Yoo, Sehoon;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.47-53
    • /
    • 2015
  • The effects of electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) surface finishes on the in-situ intermetallics reaction and the electromigration (EM) reliability of Sn-3.0Ag-0.5Cu (SAC305) solder bump were systematically investigated. After as-bonded, $(Cu,Ni)_6Sn_5$ intermetallic compound (IMC) was formed at the interface of the ENIG surface finish at solder top side, while at the OSP surface finish at solder bottom side,$ Cu_6Sn_5$ and $Cu_3Sn$ IMCs were formed. Mean time to failure on SAC305 solder bump at $130^{\circ}C$ with a current density of $5.0{\times}10^3A/cm^2$ was 78.7 hrs. EM open failure was observed at bottom OSP surface finish by fast consumption of Cu atoms when electrons flow from bottom Cu substrate to solder. In-situ scanning electron microscope analysis showed that IMC growth rate of ENIG surface finish was much lower than that of the OSP surface finish. Therefore, EM reliability of ENIG surface finish was higher than that of OSP surface finish due to its superior barrier stability to IMC reaction.

Effect of Electron-beam Irradiaton on the Artificial Bone Substitutes Composed of Hydroxyapatite and Tricalcium Phosphate Mixtures with Type I Collagen (수산화인회석과 인산삼칼슘 및 1형 콜라젠 혼합골의 전자빔 조사 효과)

  • Park, Jung Min;Kim, Soung Min;Kim, Min Keun;Park, Young Wook;Myoung, Hoon;Lee, Byung Cheol;Lee, Jong Ho;Lee, Suk Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.1
    • /
    • pp.38-50
    • /
    • 2013
  • Purpose: The aim of this study is to evaluate the effect and potential of electron beam (E-beam) irradiation treatment to the synthetic bony mixtures composed of hydroxyapatite (HA; Bongros$^{(R)}$, Bio@ Co., Korea) and tricalcium phosphate (${\beta}$-TCP, Sigma-Aldrich Co., USA), mixed at various ratios and of type I collagen (Rat tail, BD Biosciences Co., Sweden) as an organic matrix. Methods: We used 1.0~2.0 MeV linear accelerator and 2.0 MeV superconductive linear accelerator (power 100 KW, pressure 115 kPa, temperature $-30{\sim}120^{\circ}C$, sensor sensitivity 0.1~1.2 mV/kPa, generating power sensitivity 44.75 mV/kPa, supply voltage $5{\pm}0.25$ V) with different irradiation dose, such as 1, 30 and 60 kGy. Structural changes in this synthetic bone material were studied in vitro, by scanning electron microscopy (SEM), elementary analysis and field emission scanning electron microscope (FE-SEM), attenuated total reflection (ATR), and electron spectroscopy for chemical analysis (ESCA). Results: The large particular size of HA was changed after E-beam irradiation, to which small particle of TCP was engaged with organic collagen components in SEM findings. Conclusion: The important new in vitro data to be applicable as the substitutes of artificial bone materials in dental and medical fields will be able to be summarized.

The properties of AlGaN epi layer grown by HVPE (HVPE에 의해 성장된 AlGaN epi layer의 특성)

  • Jung, Se-Gyo;Jeon, Hun-Soo;Lee, Gang-Seok;Bae, Seon-Min;Yun, Wi-Il;Kim, Kyoung-Hwa;Yi, Sam-Nyung;Yang, Min;Ahn, Hyung-Soo;Kim, Suck-Whan;Yu, Young-Moon;Cheon, Seong-Hak;Ha, Hong-Ju
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.11-14
    • /
    • 2012
  • The AlGaN layer has direct wide bandgaps ranging from 3.4 to 6.2 eV. Nowadays, it is becoming more important to fabricate optical devices in an UV region for the many applications. The high quality AlGaN layer is necessary to establish the UV optical devices. However, the growth of AlGaN layer on GaN layer is difficult due to the lattice mismatch and difference thermal expansion coefficient between GaN layer and AlGaN layer. In this paper, we attempted to grow the LED structure on GaN template by mixed-source HVPE method with multi-sliding boat system. We tried to find the optical and lattice transition of active layer by control the Al content in mixed-source. For the growth of epi layer, the HCl and $NH_3$ gas were flowed over the mixed-source and the carrier gas was $N_2$. The temperature of source zone and growth zone was stabled at 900 and $1090^{\circ}C$, respectively. After the growth, we performed the x-ray diffraction (XRD) and electro luminescence (EL) measurement.

The effects of Mg impurities on β-Ga2O3 thin films grown by MOCVD (MOCVD로 성장한 β-Ga2O3 박막에 대한 Mg 불순물 주입 효과)

  • Park, Sang Hun;Lee, Seo Young;Ahn, Hyung Soo;Yu, Young Moon;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.2
    • /
    • pp.57-62
    • /
    • 2018
  • In this study, we investigated the impurity effect of $Ga_2O_3$ doped thin film by simple doping method using Mg acetate solution. Both undoped $Ga_2O_3$ thin films and Mg-doped $Ga_2O_3$ thin films were grown on Si substrates at 600 and $900^{\circ}C$ for 30 minutes by means of a customized MOCVD method. As a result of the surface analysis, there were no obvious morphological differences by Mg impurity implantation. The surface of the thin film grown at $900^{\circ}C$ was rougher than those grown at $600^{\circ}C$ and polycrystallization was achieved. As a result of the optical property analysis, in the case of the doped sample, the overall emission peak was red shifted and the UV radiation intensity was increased. As a result of the I-V curve, the leakage current of the $600^{\circ}C$ growth thin film decreased by the Mg impurity and the photocurrent of the growth thin film of $900^{\circ}C$ increased.

A Study on the Penetration Resistance and Spalling Properties of High Strength Concrete by Impact of High Velocity Projectile (고속비상체의 충돌에 의한 고강도 콘크리트의 표면관입저항성 및 배면박리성상에 관한 연구)

  • Kim, Hong-Seop;Nam, Jeong-Soo;Hwang, Heon-Kyu;Jeon, Joong-Kyu;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.99-106
    • /
    • 2013
  • Concrete materials subjected to impact by high velocity projectiles exhibit responses that differ from those when they are under static loading. Projectiles generate localized effects characterized by penetration of front, spalling of rear and perforation as well as more widespread crack propagation. The magnitude of damage depends on a variety of factors such as material properties of the projectile, impact velocity, the mass and geometry as well as the material properties of concrete specimen size and thickness, reinforcement materials type and method of the concrete target. In this study, penetration depth of front, spalling thickness of rear and effect of spalling suppression of concrete by fiber reinforcement was evaluated according to compressive strength of concrete. As a result, it was similar to results of the modified NDRC formula and US ACE formula that the more compressive strength is increased, the penetration depth of front is suppressed. On the other hand, the increase in compressive strength of concrete does not affect spalling of rear suppression. Spalling of rear is controlled by the increase of flexural, tensile strength and deformation capacity.

Experimental Study on the Dependence of Variation in Performance of a High-Temperature Generator on Its Operating Conditions (운전조건 변화가 고온재생기의 성능에 미치는 영향에 관한 실험적 연구)

  • Bae, Kyungjin;Kwak, Myoungseok;Cho, Honghyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.389-397
    • /
    • 2014
  • An absorption chiller-heater using only a natural refrigerant hardly causes any environmental pollution. In an absorption chiller-heater, the performance of its high-temperature generator, which uses exhaust gases, is essential to achieving superior system performance. To investigate the performance of such a high-temperature generator, a laboratory-scale high-temperature generator working with exhaust gases was designed and tested. Changes in the performance of the high-temperature generator as a function of inlet conditions of the absorbing solution, such as air inlet temperature and mass flow, were investigated. It was observed that when the air mass flow rate ratio was increased from 80% to 120%, the heat capacity was increased by 30%, 33%, 34%, and 37%, respectively. Additionally, when the air inlet temperature was elevated from $170^{\circ}C$ to $210^{\circ}C$ for absorption solution concentrations of 56%, 55%, 545, and 53%, the heat capacity increased by 140%, 160%, 220%, and 224%, respectively.

Characterization of carbon microspheres grown by HVPE (HVPE 방법에 의해 성장된 탄소 마이크로구의 특성)

  • Lee, Chanmi;Jeon, Hunsoo;Park, Minah;Lee, Chanbin;Yang, Min;Yi, Sam Nyung;Ahn, Hyung Soo;Kim, Suck-Whan;Yu, Young Moon;Shin, Keesam;Bae, Jong Seong;Lee, Hyo Suk;Sawaki, Nobuhiko
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.2
    • /
    • pp.62-67
    • /
    • 2015
  • The carbon microspheres of a core-shell type were grown by the method of mixed-source hydride vapor phase epitaxy (HVPE). The surface and the cross section of the carbon microsphere grown by a new method were observed by scanning electron microscope (SEM). The characteristics of the carbon microsphere were investigated by X-ray photoelectron spectroscopy (XPS) and a high resolution-transmission electron microscope (HR-TEM). From these measurements, the diameters of carbon sphere were about few hundred micrometers. Furthermore, we show that the carbon microsphere of the core-shell type by mixed-source HVPE method can be grown successfully with the larger size than those of the existing one. This mixed-source HVPE method is proposed a new method for making of carbon microsphere.

Characterizations of graded AlGaN epilayer grown by HVPE (HVPE 방법에 의해 성장된 graded AlGaN 에피층의 특성)

  • Lee, Chanbin;Jeon, Hunsoo;Lee, Chanmi;Jeon, Injun;Yang, Min;Yi, Sam Nyung;Ahn, Hyung Soo;Kim, Suck-Whan;Yu, Young Moon;Sawaki, Nobuhiko
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.2
    • /
    • pp.45-50
    • /
    • 2015
  • Compositionally graded AlGaN epilayer was grown by HVPE (hydride vapor phase epitaxy) on (0001) c-plane sapphire substrate. During the growth of graded AlGaN epilayer, the temperatures of source and the growth zone were set at $950^{\circ}C$ and $1145^{\circ}C$, respectively. The growth rate of graded AlGaN epilayer was about 100 nm/hour. The changing of Al contentes was investigated by field emission scanning electron microscope (FE-SEM) and energy dispersive spectroscopy (EDS). From the result of atomic force microscope (AFM), the average of roughness in 2 inch substrate of graded AlGaN epilayer was a few nanometers scale. X-ray diffraction (XRD) with the result that the AlGaN (002) peak ($Al_{0.74}Ga_{0.26}N$) and AlN (002) peak were appeared. It seems that the graded AlGaN epilayer was successfully grown by the HVPE method. From these results, we expect to use of the graded AlGaN epilayer grown by HVPE for the application of electron and optical devices.

Effects of Temperature and Salinity on the Growth of Marine Benthic Microalgae for Phytoremediation (식물환경복원을 위한 저서미세조류의 성장에 미치는 수온과 염분의 영향)

  • Kwon, Hyeong-Kyu;Oh, Seok-Jin;Yang, Han-Soeb;Yu, Young-Moon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.130-137
    • /
    • 2011
  • To improve sediment quality in eutrophic coastal areas using benthic microalgae, we examined the effects of temperature and salinity on the growth of benthic microalgae Achnanthes sp., Amphora sp., Navicula sp. and Nitzschia sp. isolated from Sujeong Bay, Korea, using batch cultures. The maximum growth rates were obtained under the combined temperature and salinity conditions of $25^{\circ}C$ and 25 psu for Achnanthes sp. (0.60 /day), $15^{\circ}C$ and 25 psu for Amphora sp. (0.56 /day), $20^{\circ}C$ and 30 psu for Navicula sp. (0.53 /day), $20^{\circ}C$ and 25 psu for Nitzschia sp. (0.48 /day). Considering these results of temperature and salinity conditions required for optimum growth (${\geq}$ 70% of maximum specific growth rate), Amphora sp. Navicula sp. and Nitzschia sp. were characterized as eurythermal and euryhaline species, while Achnanthes sp., which exhibited extremely low survival at low temperature. In conclusion, Amphora sp., Navicula sp. and Nitzschia sp. may be useful species for phytoremediation, to control eutrophication and hypoxic water and thus improve environmental conditions of polluted coastal areas.