• Title/Summary/Keyword: Quickbird-2 satellite

Search Result 18, Processing Time 0.018 seconds

Development of Modeling Method for 3-D Positioning of IKONOS Satellite Imagery (IKONOS 위성영상의 3차원 위치 결정 모형화 기법 개발)

  • 진경혁;홍재민;유환희;유복모
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.269-274
    • /
    • 2004
  • Recent adoption of the generalized sensor model to IKONOS and Quickbird satellite imagery have promoted various research activities concerning alternative sensor models which can replace conventional physical sensor models. For example, there are the Rational Function Model(RFM), the Direct Linear Transform(DLT) and the polynomial transform. In this paper, the DLT model which uses just a few number of GCPs was suggested. To evaluate the accuracy of the proposed DLT model, the RFM using 35 GCPs and the bias compensation method(Fraser et al., 2003) were compared with it. Quantitative evaluation of 3B positioning results were performed with independent check points and the digital elevation models(DEMs). In result, a 1.9- to 2.2-m positioning accuracy was achieved for modeling and DEM accuracy is similar to the accuracy of the other model methods.

  • PDF

Land Use Feature Extraction and Sprawl Development Prediction from Quickbird Satellite Imagery Using Dempster-Shafer and Land Transformation Model

  • Saharkhiz, Maryam Adel;Pradhan, Biswajeet;Rizeei, Hossein Mojaddadi;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • Accurate knowledge of land use/land cover (LULC) features and their relative changes over upon the time are essential for sustainable urban management. Urban sprawl growth has been always also a worldwide concern that needs to carefully monitor particularly in a developing country where unplanned building constriction has been expanding at a high rate. Recently, remotely sensed imageries with a very high spatial/spectral resolution and state of the art machine learning approaches sent the urban classification and growth monitoring to a higher level. In this research, we classified the Quickbird satellite imagery by object-based image analysis of Dempster-Shafer (OBIA-DS) for the years of 2002 and 2015 at Karbala-Iraq. The real LULC changes including, residential sprawl expansion, amongst these years, were identified via change detection procedure. In accordance with extracted features of LULC and detected trend of urban pattern, the future LULC dynamic was simulated by using land transformation model (LTM) in geospatial information system (GIS) platform. Both classification and prediction stages were successfully validated using ground control points (GCPs) through accuracy assessment metric of Kappa coefficient that indicated 0.87 and 0.91 for 2002 and 2015 classification as well as 0.79 for prediction part. Detail results revealed a substantial growth in building over fifteen years that mostly replaced by agriculture and orchard field. The prediction scenario of LULC sprawl development for 2030 revealed a substantial decline in green and agriculture land as well as an extensive increment in build-up area especially at the countryside of the city without following the residential pattern standard. The proposed method helps urban decision-makers to identify the detail temporal-spatial growth pattern of highly populated cities like Karbala. Additionally, the results of this study can be considered as a probable future map in order to design enough future social services and amenities for the local inhabitants.

Mapping of land cover using QuickBird satellite data based on object oriented and ISODATA classification methods - A comparison for micro level planning (Quickbird 영상을 이용한 객체지향 및 ISODATA 분류기법기반 토지피복분류-세부레벨계획을 위한 비교분석)

  • Jayakumar, S.;Lee, Jung-Bin;Heo, Joon
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.113-119
    • /
    • 2007
  • This article deals mainly with two objectives viz, 1) the potentiality of very high-resolution(VHR) multi-spectral and pan chromatic QuickBird satellite data in resources mapping over moderate resolution satellite data (IRS LISS III) and 2) the advantages of using object oriented classification method of eCognition software in land use and land cover analysis over the ISODATA classification method. These VHR data offers widely acceptable metric characteristics for cartographic updating and increase our ability to map land use in geometric detail and improve accuracy of local scale investigations. This study has been carried out in the Sukkalampatti mini-watershed, which is situated in the Eastern Ghats of Tamil Nadu, India. The eCognition object oriented classification method succeeded in most cases to achieve a high percentage of right land cover class assignment and it showed better results than the ISODATA pixel based one, as far as the discrimination of land cover classes and boundary depiction is concerned.

  • PDF

Assessment of Possibility for Unaccessible Areas Positioning Using Ortho Imagery (정사영상을 이용한 비접근지역의 위치결정 가능성 평가)

  • Kang Joon-Mook;Lee Yong-Woong;Jo Hyeon-Wook
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.287-291
    • /
    • 2006
  • Currently application of high-resolution satellite imagery is expanding with development of high tech optical and space aviation technology. Although using 3 dimensional modeling technology in order to attain accurate terrain information using existing ground control points is the most dependable reference data, such means are unapplicable for certain area because of it's limited access. In this study, we have researched into ways to utilizing high resolution satellite images from IKONOS and Quickbird, and sub-meter class satellites images that will be utilized In the future such as Arirang images and PLEIADES images for unaccessible areas. For that purpose we have created accuracy verification and GCP files for existing ortho-imagery and digital elevation model. The results showed that accuracy of ortho-Imagery and digital elevation model was RMSE X:3.043m, Y:2.921m, Z:6.139m. Also, after ortho-rectifying IKONOS images using ground control points extracted from ortho imagery and digital elevation model the accuracy of the imagery was RMSE X:3.243m, Y:2.067m, Z:1.872m.

  • PDF

DEVELOPMENT OF AUGMENTED 3D STEREO URBAN CITY MODELLING SYSTEM BASED ON ANAGLYPH APPROACH

  • Kim, Hak-Hoon;Kim, Seung-Yub;Lee, Ki-Won
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.98-101
    • /
    • 2006
  • In general, stereo images are widely used to remote sensing or photogrametric applications for the purpose of image understanding and feature extraction or cognition. However, the most cases of these stereo-based application deal with 2-D satellite images or the airborne photos so that its main targets are generation of small-scaled or large-scaled DEM(Digital Elevation Model) or DSM(Digital Surface Model), in the 2.5-D. Contrast to these previous approaches, the scope of this study is to investigate 3-D stereo processing and visualization of true geo-referenced 3-D features based on anaglyph technique, and the aim is at the prototype development for stereo visualization system of complex typed 3-D GIS features. As for complex typed 3-D features, the various kinds of urban landscape components are taken into account with their geometric characteristics and attributes. The main functions in this prototype are composed of 3-D feature authoring and modeling along with database schema, stereo matching, and volumetric visualization. Using these functions, several technical aspects for migration into actual 3-D GIS application are provided with experiment results. It is concluded that this result will contribute to more specialized and realistic applications by linking 3-D graphics with geo-spatial information.

  • PDF

Comparative Analysis of Image Fusion Methods According to Spectral Responses of High-Resolution Optical Sensors (고해상 광학센서의 스펙트럼 응답에 따른 영상융합 기법 비교분석)

  • Lee, Ha-Seong;Oh, Kwan-Young;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.227-239
    • /
    • 2014
  • This study aims to evaluate performance of various image fusion methods based on the spectral responses of high-resolution optical satellite sensors such as KOMPSAT-2, QuickBird and WorldView-2. The image fusion methods used in this study are GIHS, GIHSA, GS1 and AIHS. A quality evaluation of each image fusion method was performed with both quantitative and visual analysis. The quantitative analysis was carried out using spectral angle mapper index (SAM), relative global dimensional error (spectral ERGAS) and image quality index (Q4). The results indicates that the GIHSA method is slightly better than other methods for KOMPSAT-2 images. On the other hand, the GS1 method is suitable for Quickbird and WorldView-2 images.

Comparison of Landcover Map Accuracy Using High Resolution Satellite Imagery (고해상도 위성영상의 토지피복분류와 정확도 비교 연구)

  • Oh, Che-Young;Park, So-Young;Kim, Hyung-Seok;Lee, Yanng-Won;Choi, Chul-Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.89-100
    • /
    • 2010
  • The aim of this study is to produce land cover maps using satellite imagery with various degrees of high resolution and then compare the accuracy of the image types and categories. For the land cover map produced on a small-scale classification the estuary area around the Nakdong river, including an urban area, farming land and waters, was selected. The images were classified by analyzing the aerial photos taken from KOMPSAT2, Quickbird and IKONOS satellites, which all have a resolution of over 1m to the naked eye. Once all of the land cover maps with different images and land cover categories had been produced they were compared to each other. Results show that image accuracy from the aerial photos and Quickbird was relatively higher than with KOMPSAT2 and IKONOS. The agreement ratio for the large-scale classification across the classification methods ranged between 0.934 and 0.956 for most cases. The Kappa value ranged between 0.905 and 0.937; the agreement ratio for the middle-scale classification was 0.888~0.913 and the Kappa value was 0.872~0.901. The agreement ratio for the small-scale classification was 0.833~0.901 and the Kappa value was 0.813~0.888. In addition, in terms of the degree of confusion occurrence across the images, there was confusion on the urbanized arid areas and empty land in the large-scale classification. For the middle-scale classification, the confusion mainly occurred on the rice paddies, fields, house cultivating area and artificial grassland. For the small-scale classification, confusion mainly occurred on natural green fields, cultivating land with facilities, tideland and the surface of the sea. The findings of this study indicate that the classification of the high resolution images with the naked eye showed an agreement ratio of over 80%, which means that it can be used in practice. The findings also suggest that the use of higher resolution images can lead to increased accuracy in classification, indicating that the time when the images are taken is important in producing land cover maps.

Assessment of Environmental Conservation Function using Changes of Land Use Area and Surface Temperature in Agricultural Field (용인시의 토지이용면적과 지표면 온도 변화를 이용한 환경보전 기능 변동 계량화)

  • Ko, Byong-Gu;Kang, Kee-Kyung;Hong, Suk-Young;Lee, Deog-Bae;Kim, Min-Kyeong;Seo, Myung-Chul;Kim, Gun-Yeob;Park, Kwang-Lai;Lee, Jung-Taek
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This study was aimed at assess environmental conservation functions by analyzing the change of land use areas in agricultural fields between 1999 and 2006, and comparing land surface temperature distribution between 1994 and 2006 in Yongin city. Land use maps of Yongin city were obtained from soil maps for 1999, Quickbird satellite images(less than 1 m) and parcel map for 2006. The land use area for Yongin city was in the order of forest > paddy field > upland > residence & building in 1999, and forest > residence & building > paddy field > upland in 2006. Decrease of paddy and upland fields reduced 34% and 41% of the capability of agricultural multifunctionality as to environment including flood control, groundwater recharge, and air cooling. Land surface temperature(LST) was derived from Landsat TM thermal infrared band acquired in September of 1994 and 2006 and classified into three grades. The results impplied that green vegetation in agricultural field and forest play an important role to reduce land surface temperature in warm season.